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ABSTRACT 

Since early 2013, to accommodate the vast array of possibilities introduced by the concept of 

integrated energy parks that could incorporate multiple energy generation sources and multiple 

energy users, Idaho National Laboratory (INL) has been developing a library of high-fidelity 

process models in the Modelica modeling language. These models are a cornerstone of the 

analysis and optimization tools developed via the Department of Energy Office of Nuclear 

Energy (DOE-NE) Integrated Energy Systems (IES) program, led by Idaho National Laboratory 

(INL). Models are used to create and characterize system inertia, thermal losses, and the 

efficiency of integrated systems. These physical models help map physical performance into 

economic performance, allowing for system-level optimization. In addition, the models are used 

to test innovative system-level control strategies for interconnected thermal generators.  

However, for real-world applications, it is not always practical to develop a model or rewrite 

an existing model in Modelica; instead, interoperability with Legacy FORTRAN, C, Python, or 

other codes is required. To accomplish this interoperability the IES Program is seeking to modify 

the existing suite of physical models, currently held in the HYBRID physical modeling 

repository, to be consistent with a “plug-and-play” approach in Modelica/Dymola models using 

Functional Mock-Up Units (FMUs), Functional Mock-Up Interfaces (FMIs), and machine-

learning techniques. The models developed are held within the HYBRID repository that is part 

of the IES Framework for Optimization of ResourCes and Economics ecosystem (FORCE).  

This report provides an overview of all the performed activities revolving around the 

deployment of methods, software infrastructures, guidelines, and a workflow for the construction 

and usage of models, as encapsulated using the FMI/FMU protocols and standards. The report is 

organized into three main macro-subjects, all of which are interconnected: 

• FMI/FMU adaptors for Modelica models 

• The HYBRID repository’s new structure and open-source deployment 

• RAVEN FMI/FMU exporting capabilities and artificial-intelligence (AI)-based analysis 

acceleration. 

 The first part of the report discusses the FMI/FMU adaptors created within the HYBRID 

repository to allow users to quickly export models such as FMUs. Several examples are given, 

highlighting the step-by-step process of converting an existing Modelica model into an FMU for 

use within the Dymola platform. Simulation results demonstrate that, though minor differences 

may occur, overall control, trends, and solution integrity are maintained between the standard 

Modelica simulation and FMU simulation results. However, it is worth noting that, for small 

systems, the FMU requires a longer simulation time than the Modelica-only simulation. Using 

this process, a company can provide external entities with models that contain proprietary 

information, without disclosing any model-related information that could be considered business 

sensitive. Such an ability would allow institutions to bypass the necessity of having 

“whitewashed” data. 

In the second part of the report, the new structure of the HYBRID repository is discussed, 

with a major focus on the series of completed updates. These updates include the addition of 

Modelica system-level regression tests and software quality assurance (SQA) documentation to 

ensure that modifications to the Modelica models do not alter system-level model results. 
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The third and final part of the report documents the work performed for deploying methods 

and workflows to construct RAVEN AI-based models that are compliant with the FMI/FMU 

standard. Such work is key for deployment of the “flexible ecosystem” concept, since it allows 

for the replacement of high-fidelity Modelica models (or any other FMI/FMU-compliant model) 

with RAVEN-generated AI surrogate models. 

Overall, extensive work has been completed in regard to developing FMUs and FMIs from 

existing models, understanding the requirements and limitations of FMUs, and open-sourcing the 

HYBRID repository with an integrated regression system for use within FORCE.   
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1. INTRODUCTION 

Grid demand variability is an inherent part of the modern dynamic lifestyle. The addition of 

renewable energy (e.g., wind and solar) technologies introduces variability into the grid supply. 

As renewable energy integration continues to grow, variability will further increase. The 

Department of Energy Office of Nuclear Energy (DOE-NE) Integrated Energy Systems (IES) 

Program, led by Idaho National Laboratory (INL), is researching the effects the impact of 

increasing variability on grid reliability and generator profitability, and is also investigating the 

complementary role of non-electric applications of these generators. IES involve the design, 

integration, and coordinated operation of several complex, traditionally standalone systems. The 

control algorithms involved are unique to each application and component design. IES 

architecture can include process steam applications, thermal energy storage, and the presence of 

intermittent energy sources such as wind and solar, as illustrated in Figure 1. 
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Figure 1. Example IES architecture, illustrating thermal and electrical interconnection to support 

hydrogen production and chemical conversion. 

The goal of these systems is to operate as economically and efficiently as possible. For 

integrated energy parks that incorporate thermal storage, this means operating thermal generators 

at full power and storing excess energy during times of low total demand, then discharging that 

energy during times of high demand. 

Since early 2013, to accommodate the vast array of possibilities introduced by integrated 

energy parks, the IES program team has been developing a library of high-fidelity process 

models in the Modelica modeling language [1]–[4]. Modelica is a non-proprietary, object-

oriented, equation-based language for conveniently modeling complex physical systems. It is 

inherently time-dependent and enables the swift interconnection of independently developed 
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models. As an equation-based modeling language that employs differential-algebraic equation 

solvers, Modelica allows users to focus on the physics of the problem rather than on the solving 

technique, thus enabling faster model generation and, ultimately, analysis. This feature, 

alongside system flexibility, has led to widespread use of Modelica for commercial applications 

throughout the industry. System interconnectivity and the ability to quickly develop novel 

control strategies while still encompassing overall system physics is why INL chose to develop 

the IES framework in the Modelica language. 

The dynamic physical models created in Modelica are a cornerstone of the IES program. 

These models are used to create system architectures and characterize the system inertia, thermal 

losses, and the efficiency of integrated systems. These physical models help map physical 

performance into economic performance, allowing for system-level optimization. In addition, the 

models are used to test innovative system-level control strategies for interconnected thermal 

generators. However, it is noted that, for real-world applications, it is not always practical to 

rewrite a model in Modelica; instead, interoperability with Legacy FORTRAN, C, Python, or 

other codes may be required. 

To accomplish this, the IES Program is seeking to modify HYBRID, the existing physical 

modeling repository, to be consistent with the “plug-and-play” approach in Modelica/Dymola 

models using Functional Mock-Up Units (FMUs), Functional Mock-Up Interfaces (FMIs), and 

machine-learning techniques (see Figure 2). The final product will greatly enhance the physical 

modeling interoperability within INL’s Framework for Optimization of ResourCes and 

Economics ecosystem (FORCE) that is used to solve system/grid level optimization problems 

[5],[6].  
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Figure 2. Plug-and-play framework environment. 

This report summarizes the fiscal year (FY) 2020 efforts to create a plug-and-play repository 

of process models using the existing HYBRID repository, FMIs, FMUs [4], and the newly 

developed capabilities in the Risk Analysis and Virtual Environment (RAVEN) software for 

exporting artificial intelligence (AI)-based FMI/FMU models. The document characterizes and 

demonstrates the capabilities and improvements made to the previously-developed HYBRID 

repository of Modelica models for use as a software-quality-assured (SQA) plug-and-play 

system within FORCE. 

The infrastructure of the GitHub repository that hosts the HYBRID repository was also 

enhanced. These improvements, described later in full detail, include the development (using the 

RAVEN-based ROOK regression system) of a Dymola output “differ” script for use with the 

commercially available Modelica-based modeling and simulation environment (i.e., a Dynamic 

Modeling Laboratory [Dymola] version 2021 FD01 [7]), inclusion of the Oak Ridge National 

Laboratory (ORNL) TRANSFORM library as an automatic submodule [8], creation of a user 

manual [9], and development of component-level regression tests for each Modelica model. 

Extensive work was carried out on the deployment of methods for constructing RAVEN AI-

based models compliant with the FMI/FMU standard. Such work represents the necessary initial 

development for deploying the “flexible ecosystem” (plug-and-play) concept, since it allows for 

replacement of high-fidelity Modelica models (or any other FMI/FMU-compliant model) with 

RAVEN-generated AI surrogate models. This capability enables the deployment of acceleration 

schemes for analyzing IES. 
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The Conclusions section of this report highlights the high flexibility achieved via the plug-

and-play framework, possible shortcomings of the approach, and areas for further enhancement. 

 

2. FUNCTIONAL MOCK-UP INTERFACES AND UNITS 

This section briefly describes the FMIs and FMUs. As per the Modelon website 

(https://www.modelon.com): “FMI is an open standard for exchanging dynamical simulation 

models between different tools in a standardized format.” 

FMIs were first introduced by Dassault Systems under the name MODELISAR in 2008. 

FMIs define a standardized interface for use in computer simulations to develop complex cyber-

physical systems. Additionally, FMIs/FMUs can be exported as binary files, enabling industry 

partners to exchange and simulate proprietary information safely and securely, without potential 

information leakage. 

The FMI standard describes an open format for exporting and importing simulation models 

using a common data exchange nomenclature. In other words, the FMI standard allows the user 

to retain the same model while selecting the tools best suited for each type of analysis. 

In order to be executed, an FMI is always “shipped” with an FMU. An FMU is the 

executable that implements the FMI. During exportation of an FMU, an FMU archive is 

generated from a systems model, whereas during an FMU import, a systems model is generated 

from an FMU archive. 

FMUs contain the following: 

- A model description XML file: This file contains information about the model (e.g., 

variable definitions: type, unit, description, etc.) and other more general model 

information, such as model name, generation tool, and FMI version. 

- Model equations: A model can be described using ordinary differential equations, 

algebraic relations, and discrete equations—including time, state, and step events. 

These equations can in turn be represented by a small set of C functions. The C code is 

then distributed in the FMU in source and/or binary form, and one FMU can contain 

binaries for more than one platform and/or platform version. 

- Optional resource files: Other optional files might be included in the FMU, such as 

documentation files (HTML), model icons (bitmap files), maps and tables, and other 

libraries or dynamic link libraries (DLLs) used in the model. 

The FMI/FMU standard currently specifies two types of protocols: 

- FMI/FMU for model exchange (import and export) 

- FMI/FMU for co-simulation (master and slave). 

The main difference between these two protocols is that, in model exchange, the FMU is 

simulated using the importing tool's solver, whereas in co-simulation, the FMU is shipped with 

its own solver. 

The FMI for model exchange allows FMUs to be used in offline or online simulation—with 

several FMUs potentially being connected—or in embedded control systems on microprocessors. 

https://www.modelon.com/
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2.1 Co-simulation 

Figure 3 shows the information flow and scheme of FMIs/FMUs in a co-simulation 

configuration. The co-simulation (CS) configuration is characterized by: 

- Standalone black-box simulation components 

- Data exchange being restricted to discrete communication “checkpoints” 

- Between two consecutive communication checkpoints, the system model is solved by 

its internal solver. 

In summary, the goal of a co-simulation operation is to individually compute the solution of 

time-dependent coupled systems and have them communicate back and forth at predetermined 

time steps, ∆t, known as communication steps (or checkpoints). The simulation is independently 

performed between all the subsystems, and at each ∆t there is a communication and transfer of 

boundary conditions between subsystems. Because of the independent nature of these 

subsystems, an FMI for co-simulation is the easiest method to implement. However, due to the 

different solver types and the need to specify ∆t, the scheme between systems becomes fully 

explicit. Being fully explicit, it is crucial to identify a small enough ∆t to ensure system stability. 

This step size limitation ultimately reduces the simulation speed. 

 
Figure 3. Co-simulation FMI/FMU scheme. 
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2.2 Model Exchange 

Figure 4 shows the information flow and scheme of an FMI/FMU in a model exchange (ME) 

configuration. As shown in the figure, the model exchange configuration can be described as 

having the following characteristics: 

- Standardized access to model equations 

- Models described by algebraic, differential, and discrete equations 

- Monitoring of time, state, and step events 

- Models that must be solved using solvers provided by the embedding environment. 

In summary, in a model exchange FMI/FMU, the numerical solver is supplied by the 

importing tool. The FMU provides functions to set the state/inputs and compute the state 

derivatives. The solver in the importing tool will determine what time steps to use and how to 

compute the state at each subsequent time step. 

 
Figure 4. Model exchange FMI/FMU scheme. 

2.3 Advantages of Each Protocol 

Each of the two protocols described in the previous section, namely CS and ME, offer certain 

advantages. 

Co-simulation 

1. Not all tools support both protocol types. Support for CS is more common than for ME. 

2. The numerics of the model may require a specific solver available in the exporting tool 

but not in the importing tool. 
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3. The FMU may represent a sampled data system (e.g., signal processing or control 

algorithms) not governed by differential equations and therefore more naturally 

expressed as a co-simulation FMU. 

4. The exporting tool may have a more efficient implementation of the solver than the 

importing tool. 

Model exchange 

1. An explicit scheme is avoided, since the entire solve is done simultaneously. 

2. Dynamic time stepping is allowed. 

3. The importing tool could have a more efficient implementation of the solver than the 

exporting tool. 

 

3. MODELICA TO FMU ADAPTATION 

Modelica is a physical modeling language that relies on an acausal (rather than causal) 

assignment of equations. This means that an equation can only appear once, and that the 

translator and system solvers will determine the proper way to assign the flow of information. In 

addition, since Modelica is a physical modeling language, there are the assignments of special 

variable containers “flow” and “stream” that have an inherent physical representation in the 

code. Flow variables have a direction and must sum to zero in a “connection.” The “stream” 

qualifier is used to qualify when a given element in a connection has an intensive property 

flowing through a connector. These “connectors” include a singular flow variable with several 

stream variables alongside it. For example, a “fluid port” is a connector that has the mass flow 

rate as the “flow” variable and enthalpy as the “stream” variable. Mass flow is what physically 

goes through the connector, while enthalpy is a property of the mass flow. This nuance in 

variable types is particularly important when considering the translation of Modelica models into 

FMIs and FMUs. FMIs can only import and export real input/output signals. These signals 

cannot retain the physical properties seen in Modelica, thus requiring special adaptors to translate 

them back into physical values for use in other Modelica models. 

3.1 Adaptors 

For connections between FMIs and other Modelica models within the Dymola platform, a set 

of standardized variables and adapters are needed to properly transmit energy values among 

subsystems. This is particularly true if the interconnection is between two physical models, such 

as a nuclear power plant and a turbine. This is because the physical models contain “ports,” as 

shown in Figure 5. 
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Figure 5. Fluid ports (note that “ports” are a container method in Modelica used to transfer several pieces 

of physics-based information within a single “connector”). 

Each fluid port contains: 

• Mass flow (flow variable), m_flow 

• Conditional enthalpy (stream variable), h_outflow 

• Pressure, P 

• Trace substance fraction (stream variable), Ci 

• Mass fraction (stream variable), Xi. 

Each electric port contains: 

• Power (flow variable), W 

• Frequency, f 

To properly transition from ports to input and output signals, the individual components of 

the ports must be separated out and assumed to be either an input or an output. This is illustrated 

in Figure 6, with each fluid port being separated into its five constituent pieces (mass flow, 

enthalpy, pressure, mass fraction, trace substance fraction), and the electric port being separated 

into its two constituent parts (power and frequency). 
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Figure 6. Transition from a Modelica physical model into an FMU. 

In the HYBRID repository package structure, a set of adaptors was created and added to the 

utility folder to enable users to convert an existing Modelica model into a model ready for export 

as a FMU. The package placement is seen in Figure 7. Further details on each FMI template and 

interface are outlined in the next section. 

 

Figure 7. FMU template folder location within the larger Nuclear Hybrid Energy Systems (NHES) folder 

as part of the HYBRID Repository. 
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Fluid Port Adaptors 

Within the Utility.FMI_Templates folder is an adaptor package created specifically for 

Modelica standard library fluid adaptors. This package is called MSLFluidAdaptors, and it 

models acausal to causal adaptors. This folder was created in unison with Modelon. Within this 

folder are two adaptors, shown in Figure 8. One is a “pressure to mass flow” adaptor, aptly 

named PressuretoMassFlow. This adaptor’s fluid port is best connected to a flow port of some 

sort (e.g., valves, resistance, pipe model). The inputs to this model are the pressure at the 

interface, upstream enthalpy from the causal side, upstream mass fraction from the causal side, 

and upstream trace composition from the causal side. The outputs are the acausal mass-flow rate, 

upstream enthalpy from the acausal side, upstream mass fraction from the acausal side, and 

upstream trace composition from the acausal side. 

The second adaptor, called the MassFlowtoPressure adaptor, is a “mass flow to pressure” 

adaptor. This adaptor’s fluid port is best connected to a volume port (e.g., pressure sink, tank 

model). The inputs to this model are the causal mass-flow rate, upstream enthalpy from the 

causal side, upstream mass fraction from the causal side, and upstream trace composition from 

the causal side. The outputs are the pressure at the interface, upstream enthalpy from the acausal 

side, upstream mass fraction from the acausal side, and upstream trace composition from the 

acausal side. 

  

Figure 8. (Left) PressuretoMassFlow adaptor. This adaptor is best connected to a resistance port able to 

set the output mass flow rate. (Right) MassFlowtoPressure adaptor. This adaptor is best connected to a 

volume port able to set the output pressure. Note: Both of these adaptors were created by Modelon for use 

in the INL plug-and-play framework as part of an FMI/FMU course subcontract. 

Figure 9 illustrates the usage of the two adaptors on a single model involving reversible flow. 

The model is of a series of two fully open valves connected to a volume source positioned 

between them, and a pressure source on either side of the valves. The system fluid is moist air 

from the Modelica standard library. The pressure source is then subjected to a 1 Hz oscillatory 

frequency on the pressure system, as would be present in a fast-moving pressure chamber, while 
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the pressure sink remains at a constant pressure. In normal operations, this system will have a 

reversible flow, as the pressure of the source oscillates about the pressure sink’s pressure. Such 

scenarios have been challenging to meet with FMIs and FMUs, due to the reversible nature of 

the mass flow. With the new adaptors, this reversible flow issue can be met. 

 

 

Figure 9. An example (using adaptors) involving two pressure sources using moist air, one of which 

oscillates in pressure, causing a mass flow reversal. The unit in the red box will become an FMU. 

(k=Temperature input to pressure flow boundary; freqHz = pressure frequency oscillation placed on 

pressure_source).  

The unit inside the red box in Figure 9 was exported as both a model exchange and co-

simulation FMU, as shown in Figure 10 and Figure 11. All systems were then run for 10 seconds 

of simulation time. The results are depicted in Figure 12. 
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Figure 10. Example of a reversible flow using two pressure sources, moist air, and a model exchange 

FMU. (k=Temperature input to pressure flow boundary; freqHz = pressure frequency oscillation placed 

on pressure_source). 

 

 

Figure 11. Example of a reversible flow using two pressure sources, moist air, and a co-simulation FMU. 

(k=Temperature input to pressure flow boundary; freqHz = pressure frequency oscillation placed on 

pressure_source). 
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Figure 12. Comparison of mass flow to the pressure sink across the original model, model exchange 

FMU, and co-simulation FMU (timestep = 0.02 seconds). 

The results showcase that, by utilizing the fluid port adaptors, reversible flow is achievable in 

both the model exchange and co-simulation FMIs/FMUs. However, these capabilities carry 

additional overhead in regard to central processing unit (CPU) time. Model exchange for this 

particular model increases the simulation time from 2.364 to 6.749 seconds. Co-simulation with 

a 0.02-second communication interval took 10.795 seconds. Even so, co-simulation still shows 

the largest error, due to co-simulation models inherently being an explicit solve. However, given 

a sufficiently small communication interval, and depending on the dynamics of the model, an 

acceptable solution can be achieved. 

Thermal Port Adaptors 

Within the Utility.FMI_Templates folder is an adaptor package created specifically for 

Modelica standard library thermal adaptors. This package is called MSLHeatAdaptors, and it 

models acausal to causal adaptors. These models were initially made available in the Modelica 

standard library and have been augmented with additional examples and placed within the NHES 

package for ease of access relative to other FMI adaptors. Two adaptors are included, one being 

the GeneralHeatFlowToTemperature adaptor. The inputs to this adaptor are the acausal heat flow 

port, causal heat flow, and optional causal first and second derivatives of heat flow. The outputs 

are the temperature and the optional first and second derivatives of temperature. 
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The second adaptor is the GeneralTemperaturetoHeatFlow adaptor. The inputs to this adaptor 

are the acausal heat flow port, causal temperature, and optional causal first and second 

derivatives of temperature. The outputs are the heat flow and the optional first and second 

derivatives of heat flow. 

 

  

Figure 13. (Left) GeneralTemperatureToHeatFlow adaptor for use in the INL plug-and-play framework. 

(Right) GeneralHeatFlowToTemperature adaptor for use in the INL plug-and-play framework. 

(T=temperature, dT = first derivative of temperature, d2T = second derivative of temperature, Q = heat 

flow, der(Q) = first derivative of heat flow, der2(Q) = second derivative of heat flow.) Note: only T and Q 

are required the derivative values are optional for stability.  

Figure 14 illustrates the usage of the two adaptors in a single model involving two methods 

of heat port usage. The upper model demonstrates how to export two heat capacitors and connect 

them together in a target system. This requires that one of the capacitors (here, DirectCapacity) 

be defined to have states, and that the temperature and derivatives of the temperature are 

provided in the interface. The other capacitor (here: InverseCapacity) requires a heat flow in 

accordance with the provided input temperature and derivative of temperature. The lower part 

demonstrates how to export a conduction element that only requires temperatures for its 

conduction law, and connects this conduction law to both the heat capacitors in a target system. 

Both models will be translated into a model exchange and co-simulation model, as shown in 

Figure 15, Figure 16, Figure 17, and Figure 18. The results are compared in Figure 19 and Figure 

20. 
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Figure 14. Example meant to demonstrate the FMU variants available with the thermal FMU adaptors. 

The upper part demonstrates how to export two heat capacitors and connect them together in a target 

system. The lower part demonstrates how to export a conduction element that only requires temperatures 

for its conduction law, and connects this conduction law to both heat capacitors in a target system. 



 

 

 

 

 

 

16 

 

Figure 15. Demonstration of an FMU variant example that uses model exchange FMUs for the thermal 

heat port adaptors. 

 

 

 

Figure 16. Collapse of the upper part of Figure 14 into a single FMU for co-simulation. This is required 

because the frequency between the direct and inverse conduction problem is so fast that a single cut 

between the two could not be made without instabilities occurring. 
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Figure 17. Upper model of Figure 14 connected with the combined direct/inverse co-simulation FMU. 

 

Figure 18. Lower model of Figure 14, co-simulation FMU. 

The results showcase that, by utilizing the thermal adaptors, acceptable results in terms of the 

heat flow between models can be achieved via both model exchange and co-simulation 

FMIs/FMUs. However, these capabilities carry additional overhead in regard to CPU time, as 

was the case in the fluid port scenario. The co-simulation mode, though theoretically easier to 

export to external codes thanks to its inclusion of a solver, required the most augmentation, due 

to the fast system dynamics. This limitation required the FMU to include both the direct and 

inverse capacitors within a singular model, as shown in Figure 16, otherwise a divergent solution 

was acquired. Even with this additional step, the co-simulation solve still showed the largest 

error, as depicted in Figure 19 and Figure 20. This is because co-simulation models are 

inherently an explicit solve. However, given a sufficiently small communication interval and 

depending on the dynamics of the model, an acceptable solution can be achieved. 
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Figure 19. Direct/inverse simulation results for the original, model exchange, and co-simulation 

(communication interval: 0.002 seconds) FMU runs. (Top) Heat flow into the capacitor. (Bottom) 

Capacitor 3b temperature. 
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Figure 20. Conduction (lower model) simulation results for the original, model exchange, and co-

simulation (communication interval: 0.002 seconds) FMU runs. (Top) Heat flow into the capacitor. 

(Bottom) Capacitor 3b temperature. 

Electrical Port Adaptors 

Within the Utility.FMI_Templates folder is a package created specifically for electrical 

adaptors. This package is called ElectricalAdaptors, and it models acausal to causal adaptors. 

Two adaptors are included (see Figure 21), one being the GeneraPowerFlowToFrequency 

adaptor. The inputs to this adaptor are the acausal electrical port, causal power, and optional 

causal first and second derivatives of power. The outputs are the frequency and the optional first 

and second derivatives of frequency. 

The second adaptor is the GeneralFrequencyToPowerFlow adaptor. The inputs to this 

adaptor are the acausal electrical port, causal frequency, and optional causal first and second 
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derivatives of frequency. The outputs are the power flow and the optional first and second 

derivatives of power flow. 

 

  

Figure 21. (Left) GeneralFrequencyToPowerFlow adaptor for use in the INL plug-and-play framework. 

(Right) GeneralPowerFlowToFrequency adaptor for use in the INL plug-and-play framework. (Red circle 

represents the electrical port, with inputs and outputs equal to the aforementioned variables in the 

section).  

3.2 FMI Construction Guide 

To properly create and utilize a model as an FMI/FMU, the following five steps must be 

accomplished. 

1. Model Preparation 

2. Adaptors 

3. Export 

4. Import 

5. Simulation 

This section seeks to provide step-by-step guidance on how each of these steps can be 

accomplished. 
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Model Preparation 

For a model to become a usable FMU, it must contain all the required input/output variables 

within itself, aside from those designated to come from an outside model. This requirement 

means that, for units featuring interchangeable control systems, a particular control system must 

be declared via a top-level declaration in an example style file. An example of both an incorrect 

and a correct file format for a natural gas peaking turbine are shown in Figure 22 and Figure 23, 

respectively. In Figure 22 the natural gas turbine model includes the basic constituent parts for its 

simulation (compressor, turbine, combustion chamber, inertial generator shaft, generator, fuel 

controllers, and geometrical data assumptions). But in Dymola if this model is run it is missing a 

selected control system for the sensor and actuator bus as this is a “replaceable” component. 

Meaning the model needs to be imported within a new model to allow us to select the control 

system.   

 

 

Figure 22. Incorrect level for proper export as FMI/FMU. Control system has not been declared and is 

replaceable from a higher level within the HYBRID repository. 

This placement within a new model is shown in Figure 23. In this case the model from Figure 22 

is placed within a new model, the electric port is attached to a frequency boundary condition and 

if we double click the natural gas turbine icon the table on the left pulls up where the control 

system can be selected and values can be imported for system size and maximum power output. 

Once this control system is selected the model is now ready to begin model preparation for 

FMI/FMU exportation. Note: the control system selected will be the control system exported 

with the FMI/FMU.  
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Figure 23. Correct level from which to begin FMI/FMU preparation. Control system has been selected via 

the drop-down menu available in the custom parameters section, shown on the left. (Red dots are 

electrical flow ports).  

Adaptors 

Now that the proper model has been created, the variables designated to come from outside 

the FMU must be declared as a real “input” or “output” variables, as demonstrated in Figure 6. 

To accomplish this, the adaptors can be employed in the manner previously outlined. For the 

natural gas turbine example illustrated in Figure 23, the electric port must be converted into real 

inputs/outputs using the PowerFlowToFrequency adaptor described in the previous section. In 

addition, the control system of the natural gas turbine requires a top-level demand signal to 

communicate the grid demand at each time interval. To implement such communication into the 

model, an additional real input variable, “SES_Demand,” was created. With the adaptor and new 

input signal created, the model took the form depicted in Figure 24, and is ready for export as an 

FMU. This procedure of using an adaptor to transform ports into their real input/output 

components, and creating additional inputs/outputs for declared variables, works well for simple 

models and models intended for use in model exchange mode. For complex models planned for 

simulation in co-simulation mode, use of adaptors may prove challenging if the initialization of 

the models is not well-defined. This is due to the explicit nature of co-simulation modeling. 

Further details on this will be given in later sections of this report. 
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Figure 24. Preparing a natural gas turbine to be converted into an FMU. The inputs into the system are the 

peaking demand and the connection points for electricity backflow into the turbine model. The output is 

the electrical power as a real value. 

Export 

Dymola offers several ways to export a model as an FMU, as shown in Figure 25. The FMU 

can include three different types of export: model exchange, co-simulation using the CVode 

solver, and co-simulation using various Dymola solvers. 

In model exchange, the component model will be exported without a solver, as it is assumed 

that the importing tool will provide the solver. For co-simulation models, CVode and Dymola 

solvers can be exported with the component model for use within other models. In general, 

CVode solvers are sophisticated enough for most models, and export can be selected in either C-

code or binary code, depending on the purchased Dymola license. In the event a particular 

Dymola solver is required to compile a component model, the co-simulation export can only be 

accomplished as a binary, thus protecting the proprietary solver information held by Dassault 

systems. However, binaries are operating-system dependent, so care must be taken to ensure that 

export of binary FMUs is conducted on the same operating system as the planned importing tool.  
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Figure 25. Export settings from Dymola 2021x. 

Import 

Once the model has been exported and an FMU created, the model will be present as an .fmu 

file. In the case of the natural gas turbine, it will be called “SES_GTTP.fmu.” To import this file 

in Dymola, click File  Open  Import FMU, as shown in Figure 26. 

The FMU can be imported in either model exchange or co-simulation mode, as per Figure 

27. This selection should be consistent with the export options included in the FMU. If the 

desired import mode is different than the model of the original FMU, the imported FMU will 

fail. 

 Including the “structured declaration of variables” option retains the structured file tree of 

variables that were present in the original model, enabling the user to look inside the FMU as 

though it were the original Dymola model. If this option is not selected, a single large list 

featuring all the variables available for access will be made available to the user. 
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Figure 26. Importing FMU steps in Dymola 2021x. 

  

 

Figure 27. Import settings from Dymola 2021x. 
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Simulation 

After the import step, the model can be used in place of the main component, as shown in 

Figure 28. In the system, it is important to ensure that all materials, initial conditions, nominal 

conditions, and parameter setpoints are consistent across the boundaries between the FMU and 

the rest of the model. This is particularly important because FMUs take real inputs and provide 

the surrounding model with outputs that have no physical constraint placed upon them. This 

reduces the number of checkpoints that the underlying application program interface (API)s has 

in order to ensure a consistent model. This places more onus on the engineers/researchers. 

When using model exchange, the model will act similarly to the primary model, as the 

equation set remains exposed to the underlying import tool solvers. Conversely, in co-simulation 

mode, a specified “communication step” size must be selected, at which point the models will 

export results for communication with the surrounding external models. Selecting a small 

enough communication step to ensure that all the dynamics are captured is critical, but selecting 

a time-step communication interval that is too small greatly reduces the system’s simulation 

speed. 

 

Figure 28. Proper import and use of a co-simulation FMU in Dymola. 
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Figure 29. FMI settings for the natural gas turbine FMI/FMU in co-simulation mode. The communication 

interval was every 0.12 seconds, with an internal solver tolerance of 1e-6. The internal solver was the 

Dymola specific DASSL solver. 

To test the FMU, the physical model was run in co-simulation, model exchange, and normal 

Modelica-only mode. The resulting turbine output is illustrated in Figure 30. For the three 

aforementioned modes, all the models converged to the same solution over the 60-second 

simulation time, with real-time simulation speeds of 1.316, 0.147, and 0.064 seconds, respectively. 

The co-simulation FMI settings are shown in Figure 29. In all cases, the simulation speeds are 

slower for FMU representations. This can be attributed to the increased overall number of variables 

that must be simulated due to the need for additional boundary blocks to accommodate real 

inputs/outputs. In addition, for co-simulation, the limiter on simulation speed is directly impacted 

by the communication step size and the nonlinearity of the coupled system. For example, 

increasing the communication step size from every 0.12 seconds to every second reduces 

simulation time from 1.316 seconds to 0.514 seconds. However, as demonstrated in Figure 30, this 

comes at the price of accuracy. Therefore, it is essential that, for co-simulation models, the 

communication step occur at points with slow-moving physics in order to allow the system a larger 

communication step size. 
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Figure 30. Comparison of Dymola model results to co-simulation and model exchange FMU results. 

Communication intervals for co-simulation = 0.12 seconds and 1 second. 

3.3 Turbine Replacement Example 

The creation of FMUs makes it possible to take a model from one coding language and 

encapsulate it in a standardized format for use within another coding language. To test this 

functionality with the more complicated fluid equation set of water, a natural circulation small 

modular reactor (SMR) set was chosen. The modeling set, shown in Figure 32, includes the 

reactor, energy manifold, turbine generator, and electric grid—all modeled in the Modelica 

language. The turbine generator set was then converted from a Modelica model into an FMU to 

ensure that all the proper data were input into and transferred between the models. The initial 

step was to implement the adaptors (discussed in the previous section) that transform the fluid 

ports into constituent real outputs, as shown in Figure 31. The progression of translation is 

shown in Figure 32, going from the Modelica-only model to a model exchange FMU that is then 

included in the model. 
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Figure 31. Translation of the Modelica turbine generator model into an FMU-ready design. 

The control system within the turbine generator model is maintained through the translation 

process and can fulfill the desired setpoints within the turbine model. Then, the model is 

exported into a model exchange FMU and reimported into the Modelica framework. A 

comparison of the turbine power output is depicted in Figure 33, showing that the different 

versions of the model are in close agreement with each other. The differences can be attributed to 

minute variations in initialization subroutines that occur in the initialization phase of the run. The 

FMU-based results and input-based Modelica results are nearly identical, and both simulations 

were able to meet the turbine demand setpoints. It is worth noting that a version using co-

simulation was attempted, but instabilities arising from the explicit time-stepping scheme could 

not be overcome; thus, the co-simulation was deemed unsolvable. Such scenarios become more 

common as the complexity of the models increases. While co-simulation is the easiest version of 

FMI to implement, instabilities such as these also increase the possibility of simulation 

roadblocks. 
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Figure 32. Transition from a Modelica model to an FMI-based simulation. 

 

 

Figure 33. Comparison of turbine output results between the original model and model exchange FMU. 
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4. HYBRID REPOSITORY 

At the beginning of the IES Project, a version control repository was delivered in order to 

provide a common location for the deployment of system and component models and analyses 

developed and constructed with Modelica/Dymola and RAVEN. To initiate the construction of a 

flexible plug-and-play Modelica/RAVEN framework for IES analysis, a restructuring of the 

version control repository (HYBRID, available at https://hpcgitlab.inl.gov/hybrid/hybrid and at 

the open-source repository location https://github.com/idaholab/HYBRID) was performed. 

The following main tasks were performed for this specific activity: 

• Usage of the RAVEN regression test system (named ROOK) for deployment of a single, 

integrated testing platform for both Modelica and Dymola models/analysis and RAVEN 

workflows. The testing system was linked with the automatic continuous integration tool 

for the automatic testing of the models and analyses when new modifications are added in 

the repository. 

• Folder structure optimization for easier browsing and usage of the version control 

repository. 

Figure 34 shows the new repository structure, with the following main folders identifiable: 

• Models: contains the Modelica and Dymola models 

• archive: where old examples and analyses (i.e., documents, models, input files, etc.) are 

archived and stored to guarantee reproducibility of published results 

• developer_tools: contains utility scripts, methods, and files required for the automation, 

deployment, and verification of the tools and software products of the HYBRID 

repository. This folder contains all the scripts for the automatic generation of software 

quality assurance (SQA) documentation (e.g., requirements, traceability matrix, etc.).  

• scripts: contains scripts for installing the HYBRID repository (e.g., scripts to create the 

HYBRID configuration file). It also contains specialized classes and scripts for the 

automatic regression testing system (e.g., output checkers) and Python-based launchers 

for Dymola models (dymola_launcher). 

• tests: contains all the tests that are automatically executed by the continuous integration 

system and are locally executable by running the command “run_tests.”  

• TRANSFORM-library: submodule of the Oak Ridge National Laboratory based 

TRANSFORM library that provides base models for many of the integrated energy 

systems models 

• raven: links to the RAVEN repository. 

https://hpcgitlab.inl.gov/hybrid/hybrid
https://github.com/idaholab/HYBRID
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Figure 34. New structure of the repository. 

Furthermore, a series of Modelica tests has been added to test the system-level interactions in 

the NHES Modelica repository. An example output of the regression system is shown in Figure 

35. 

Table 1. Synopsis of Modelica test cases. 

Test  Description 

Bouncing Ball  Simple test that models a bouncing 

ball hitting the ground.  

BOP Boundaries Test A  Balance of plant system based on 

pressure difference 

BOP Boundaries Test B  Balance of plant system based on 

forced mass-flow rate 

Desalination 1 Pass  Single-stage reverse osmosis 

component check 

Desalination 2 Pass  Second stage reverse osmosis 

component check 

Desalination 2 Pass Mixing  Two-stage reverse osmosis with 

mixing 
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Desalination Reverse Osmosis 

Module 

 Fully encapsulated two-stage reverse 

osmosis with mixing 

Desalination NHES Basic  Controlled desalination NHES 

system 

Desalination NHES Complex  Controlled via signal bus NHES RO 

system with parallel osmosis units 

FMI Fluid CS  Test of the fluid adaptors in a small 

problem in co-simulation mode 

FMI Fluid CS  Test of the fluid adaptors in a small 

problem, using model exchange 

FMI Heat CS Capacity  Test of the thermal adaptors in a 

small problem in co-simulation 

mode, using a thermal capacitance 
model 

FMI Heat CS Conduction  Test of the thermal adaptors in a 

small problem in co-simulation 

mode, using a heat conduction model 

FMI Heat ME  Test of the thermal adaptors in a 

small problem in model exchange 

(solving both the conduction and 

capacitance models simultaneously) 

Generic Modular PWR  SMR of a NuScale size system with 

a pump 

GTTP_Test  Gas turbine load follow test – 60-

second electric demand oscillation 

HTSE Power Test  High Temperature Steam 

Electrolysis (HTSE) NHES system 

based on power input control 

HTSE Steam Test  HTSE NHES system based on steam 

and power input control 

Hydrogen Turbine Test  Hydrogen turbine load follow test – 

60-second electric demand 

oscillation 

NSSS_test  Westinghouse-style four loop PWR 

test – 10,000 seconds at nominal 

power 

Simple_Breakers_Test  Test of electrical breakers on an 

infinite grid 

SMR_4Loop  Test of load following a natural-

circulation SMR – 5-hour load 

follow simulation 

SMR Primary Test  Test of the primary loop of a natural-

circulation SMR loop 

SMR Nominal Test  Addition of nominal power test for a 

natural-circulation SMR reactor 
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Step-Down Turbines  Basic set of step-down turbines 

Step-Down Turbines Complex  Test of a more complex step-down 

turbine system 

Supervisory Control Test  Test of the supervisory control 

system for receiving input from 

external files 

Test_Battery_Storage  Test of a simple electrical battery 

system – logical power flow 

simulation 

Test_Thermal_Storage  Test of a Therminol-66 thermal 

energy storage facility through both 

charge and discharge cycles  

TightlyCoupled_FY18_Battery  Complex system of systems from the 

2018 case (including electric battery 

storage) 

Tightly Coupled_FY18_TES  Complex system of systems from the 

2018 case (including thermal energy 

storage [two-tank sensible heat]) 

Thermocline Cycling Test  Test of the hourly cycling of a 

single-tank packed-bed thermocline 

system 

Thermocline Insulation Test  Test of the insulation heat loss 

through the tank walls of a single-

tank packed-bed thermocline system 

 

While these tests are not exhaustive of the Modelica repository system, they provide a 

systems-level understanding of the repository model state. Other tests will be added on an as-

needed basis. 

 



 

 

 

 

 

 

35 

 

Figure 35. An example of tests run in the ROOK regression system. 

Other capabilities besides tests were added to the regression system in order to allow for 

smoother cross-platform and cross-machine compatibility. These capabilities were necessary 

because the commercial platform Dymola by Dassault systems has a series of settings that 

control the type of outputs sent to the final solution file. Ensuring that every user has the same 

flags turned on/off is unrealistic, since some of the flags are global settings turned on for every 

simulation loaded into their particular instantiation of Dymola. To get around this, the ROOK 

testing system added the capability to only look at those time steps or time intervals guaranteed 

to be included in each simulation of the model, regardless of the flags automatically loaded by 

Dymola. To accomplish this, an extra option (either “numberOfIntervals” or “OutputInterval”) is 

required in the simulateModel command in the regression system. The option numberOfIntervals 

tells Dymola how many output intervals to make, whereas OutputInterval tells Dymola at what 

time-step interval an output should be present for comparison. These can be selected in the 

Simulation Setup tab of the Dymola graphical user interface (GUI). 

Further, a restart file loading capability was added to the Modelica regression system. This 

was included because, for complex models, the initialization phase of a simulation can require 

the Modelica solvers to spend a significant amount of time finding an initialization point. This is 

due to the highly nonlinear nature of the underlying physical equations. One way to avoid such 

situations is to provide a restart file to bypass the initialization phase of the simulation. A restart 

file is automatically created at the end of each simulation; this is the dsfin.txt file created in the 
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folder from which the simulation was run. This file includes the final values of the previous 

simulation, from which the new model can restart. Moving this file to the tests/reference folder 

and loading it into the regression system can save a substantial amount of time in regression 

testing and provide a consistent starting point for each test, rather than relying on the same 

initialization point being found during each regression testing cycle. Full details on how to utilize 

and create new regression tests can be found on the HYBRID wiki at 

https://hpcgitlab.inl.gov/hybrid/hybrid/wiki or at its open-source location, 

https://github.com/idaholab/HYBRID/wiki). 

The work covered in this report was propaedeutic for releasing the modeling framework in 

the open-source community. Several activities were deployed for open-sourcing of the software: 

• User documentation: 

- Development of an extensive user manual [9], providing a detailed description of the 

models (Modelica and Dymola) and instructions on how to execute them 

• SQA documentation (see Figure 36), available both in the INL internal Electronic 

Document Management System (EDMS) and the GITHUB website under “./doc/sqa/”. 

Such documentation is aimed at collecting the following information: 

- Project planning information 

- High-level overview touching on our entire project and software development 

activities. 

- Roles and responsibilities 

- Merge request workflow (e.g. code change requests) 

- Workflow diagram 

- Software development plan 

- Documentation of references to other relevant plans and procedures 

- Information about the software safety and quality level determinations 

- Definitions of software validation and verification  

- Methods and procedures for software validation and verification. 

And it is composed of the following set of documents: 

• HYBRID Software Quality Assurance Plan (PLN-6274) (detailing the SQA procedures 

adopted for the development and lifecycle of the HYBRID software framework) 

• HYBRID Software Configuration Management Plan (PLN-6274) 

• HYBRID Software Test Plan (PLN-6274) 

• HYBRID IT Asset Maintenance Plan (PLN-6274) 

• HYBRID Verification and Validation Plan (PLN-6274) 

• HYBRID Software Design Description (SDD-561) 

• HYBRID Software Requirement Specification (SPC-2990) 

https://hpcgitlab.inl.gov/hybrid/hybrid
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• HYBRID Traceability Matrix (SPC-2990) 

• HYBRID Configuration Item List (LST-1296). 

 

 

Figure 36. Status of the required SQA documentation for the HYBRID modeling repository. 

5. DEPLOYMENT OF A RAVEN FMI/FMU DRIVER 

Previous milestone reports [10],[11] demonstrated the successful execution of the FMIs and 

FMUs using external Python-based frameworks (FMPy [12] and PyFMI [13]). Such showcasing 

provided the basis for implementing the FMI and FMU interfaces within the RAVEN 

framework. The following sections offer a brief overview of the RAVEN code and the 

implementation of the driver for FMI/FMU-based models. 

5.1 RAVEN Introduction 

RAVEN is designed to perform parametric and probabilistic analyses based on the response 

of complex system codes. RAVEN can be used to investigate the system response—as well as 

the input space—using Monte Carlo, grid, or Latin hypercube sampling schemes, but its strength 

lies in the discovery of system features, such as limit surfaces, identifying and separating regions 
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of the input space leading to system failure, and using dynamic supervised learning techniques. 

RAVEN includes the following major capabilities: 

• Sampling of codes for uncertainty quantification and reliability analyses 

• Generation and use of reduced-order models (ROMs) (also known as surrogate models) 

• Data post-processing (time-dependent and steady-state) 

• Time-dependent and steady-state statistical estimation and sensitivity analysis (mean, 

variance, sensitivity coefficients, etc.). 

The RAVEN statistical analysis framework can be employed for several types of 

applications: 

• Uncertainty Quantification 

• Sensitivity/Regression Analysis 

• Probabilistic Risk and Reliability Analysis 

• Data Mining Analysis 

• Model Optimization. 

RAVEN provides a set of basic and advanced capabilities that range from data generation to 

data processing and data visualization. Its mission is to provide a framework/container of 

capabilities that engineers and scientists can use to analyze system responses, physics, and multi-

physics by employing advanced numerical techniques and algorithms. 

RAVEN was conceived with two major objectives in mind:  

• To be as easy and straightforward as possible for scientists and engineers to use 

• To allow for straightforward expansion of itself by providing clear and modular APIs 

(Application Programming Interfaces) to developers. 

The RAVEN software is meant to be approachable by any type of user (computational scientists, 

engineers, or analysts). Every aspect of RAVEN was driven by this singular principle, from the 

build system to the APIs to the software development cycle and input syntax. 

The main idea behind the RAVEN software design remains the creation of a multi-purpose 

framework characterized by high flexibility with respect to the possible performable types of 

analyses. The framework must be able to construct the analysis/calculation flow at run-time, 

interpret the user-defined instructions, and assemble the different analysis tasks following a user-

specified scheme. 

5.2 RAVEN Models 

In RAVEN, coupling of the system to physical models is performed by the model entity API. 

The model entity represents a “connection pipeline” between the input and output spaces. The 

RAVEN framework (see Figure 37) provides APIs for the main model categories described 

below. 

• Codes: The Code model represents the communication pipe between the RAVEN framework 

and any system and/or physical code/model. The communication between RAVEN and any 
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driven code is performed through the implementation of interfaces directly operated by the 

framework. The procedure for coupling a new code/application with RAVEN is a 

straightforward process. The coupling is performed through a Python interface that interprets 

the information coming from RAVEN and translates them to the input of the driven code. 

The coupling procedure does not require modifying RAVEN itself. Instead, the developer 

creates a new Python interface that will be embedded in RAVEN at run-time (no need to 

introduce hard-coded coupling statements). If the coupled code is parallelized and/or multi-

threaded, RAVEN will manage the system in order to optimize the computational resources 

of both the workstations and High-Performance Computing systems. 

 

Figure 37. RAVEN framework scheme. 

• Externals: The External model allows the user to create, in a Python file (imported at 

run-time into the RAVEN framework), its own model (e.g., set of equations representing a 

physical model, connection to another code, and control logic). This model will be 

interpreted/used by the framework and, at run-time, will become part of RAVEN itself. 

• Reduced Order Models (ROMs): Reduced order, AI-based surrogate models, are a 

mathematical representation of a system, used to predict a physical system’s selected output 

space. The “training” is a process that uses sampling of the physical model to improve the 

ROM’s prediction capability (i.e., the capability to predict the status of the system given a 

realization of the input space). More specifically, in RAVEN, the ROM is trained to emulate 

a high-fidelity numerical representation (system codes) of the physical system. 
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• Hybrid models: The HybridModel can combine ROMs with any other high-fidelity model 

(e.g., Code or ExternalModel). The ROM will be “trained” based on the results from the 

high-fidelity model. The accuracy of the ROM will be evaluated based on the 

cross-validation scores, and the validity of the ROM will be determined via local validation 

metrics. After the ROM is trained, the HybridModel can decide which model (i.e., the ROMs 

or high-fidelity model) to execute, based on the accuracy and validity of the ROMs in a 

particular operating region. 

• Ensemble models: The EnsembleModel is used to create a chain of Models whose execution 

order is determined by the Input/Output relationships among them. If the relationships among 

the models evolve in a non-linear system, a Picard’s Iteration scheme is employed. 

• Postprocessors: The Post-Processor model represents the container of all the data analysis 

capabilities in the RAVEN code. This model is used to process the data (e.g., derived from 

sampling of a physical code) in order to identify representative Figures of Merit. For 

example, RAVEN uses Post-Processors to perform statistical and regression/correlation 

analysis, data mining and clustering, reliability evaluation, topological decomposition, etc. 

• RAVEN FMI/FMU Driving System Development. 

Development of the FMI/FMU driving system is based on the ExternalModel entity in 

RAVEN. As briefly reported in the previous section, the external model (see Figure 38) enables 

developers to create, in a Python module or platform, a direct coupling with a model coded in 

Python (e.g., a set of equations representing a physical model, connection to another code, and 

control logic). Once the external model is constructed, it is interpreted and used by RAVEN, 

ultimately becoming, at run-time, part of RAVEN itself. 

 

Figure 38. External model API. 
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Figure 39. FMI/FMU model skeleton in RAVEN. 

The ExternalModel API (ExternalModel plugin) was used to develop, in RAVEN, a native 

driver for models using the FMI/FMU protocol. Figure 39 shows a snapshot of the “wrapper” 

that was developed. The “FMIFMU” RAVEN model implements a generalized method—based 

on the RAVEN API and syntax—to import, execute, and process the results of any model 

compatible with the FMI/FMU standard. The model consists of the following methods: 

- run: The run method (the only required method in the API) aims to execute the FMU 

(FMI) for a given input coordinate (or input perturbation). The run method represents 

the pipeline between RAVEN and the FMI/FMU model. The method both executes and 

collects the results that will be then stored in the object “container,” ready for processing 

by RAVEN. 

- readExtInput: This method is in charge of reading the user-define input for the 

FMI/FMU that needs to be driven. It collects the following information (expandable in 

the future, if needed): 

• startTime: The start time of the driven FMU (e.g., 0.0 seconds) 

• stopTime: The stop time of the driven FMU (e.g., 60 seconds) 

• stepSize: The time step size to use for the calculation (e.g., 1.e-2 seconds) 

• inputVariables: A list of the input variables (e.g., demand) 

• outputVariables: A list of the output variables (e.g., power level) 

• fmuFile: The FMU location (e.g., /path/to/myFmu.fmu) 

- initialize: This method is invoked right before the model is executed. This method aims 

to load the FMI/FMU, instantiate the class, and initialize its settings.  

This method is also in charge of performing error checking of the user-defined 

settings/options. 

- createNewInput: This method, in case of a sampling strategy, is responsible for 

translating” the RAVEN info (e.g., the values of sampled variables) into the FMI/FMU 

syntax. 
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Figure 40. FMI/FMU co-simulation protocol coupled with RAVEN. 

Depending on the type of protocol for the FMI or FMU of interest, two coupling schemes in 

the FMIFMU wrapper were developed. Both schemes are encapsulated in the same wrapper and 

are executable via the model API in RAVEN. 

Figure 40 shows the coupling scheme for FMIs/FMUs when the co-simulation protocol must 

be used; RAVEN interacts with the different models via the FMIFMU wrapper that uses FMPy 

to import and interact with the FMUs. In this coupling scheme, RAVEN “perceives” the models 

imported via FMIs/FMUs just as it would any other external model or code. This protocol is 

indicated when the models to connect are loosely coupled (multi-physics feedbacks are not 

strong and/or the physics dynamic of the different models act on different time scales, e.g., 

seconds vs. hours or days).  

On the other end, Figure 41 shows the coupling scheme for FMIs/FMUs when the model 

exchange protocol is used; in this configuration, RAVEN can directly interact with the universal 

solver that aims to solve all the models (compatible with the FMI/FMU protocol, in this case 

Dymola). This coupling scheme is preferrable when the models are highly nonlinear and the 

models are tightly coupled with fast moving dynamics.   
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Figure 41. FMI/FMU model exchange protocol coupled with RAVEN. 

 

 
Figure 42. External model FMIFMU example RAVEN input file. 

Figure 42 shows an example of the portion (in XML) of the RAVEN input file required to 

use the FMIFMU wrapper. This XML block is the one processed by the previously-described 

method “readExtInput.”.  Independently on the type of FMI/FMU that the model will import and 

use, the input file specifications do not change; the FMIFMU wrapper will collect the 
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information (co-simulation or model exchange) directly from the FMU (i.e., the <fmuFile>) 

after loading. 

6. DEPLOYMENT OF RAVEN FMI/FMU EXPORTER FOR AI-BASED 

ANALYSIS ACCELLERATIONS  

As described in the previous section, the RAVEN framework provides APIs for different 

model categories, among which are the ROM, AI-based algorithms.  In order to deploy the 

acceleration of IES analysis, the ROM (AI) entity is key. Indeed, the ROM is aimed at higher 

fidelity surrogate and system simulator-based models (for specific and limited operational 

domain) with a set of faster-execution equations that allow for the prediction of Figures of Merit 

(of interest) in a span of milliseconds.  

 

Figure 43. Construction process for surrogate models in RAVEN. 
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6.1 RAVEN AI construction  

Figure 43 illustrates the standard process of constructing (via optimization) RAVEN 

surrogate (AI) models. The surrogate model of interest is trained on a dataset, and its hyper-

parameters (i.e. parameters and characteristics of the surrogate model of interest) are tuned to 

maximize the accuracy in predicting the figure(s) of merit (FOMs) of interest. As shown in 

Figure 44, the accuracy is assessed by applying statistical methodologies (i.e., cross-validation), 

which consists of randomly portioning the dataset into “training” and “testing” datasets. The 

“training” dataset is used for constructing the surrogate model, and its prediction is compared 

with the “testing” dataset. The prediction accuracy is then assessed using distance metrics (e.g., 

R2 score) between the surrogate model and the testing dataset. 

 

Figure 44. RAVEN ROM cross-validation scheme. 
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The so-constructed surrogate models allow for fast evaluation of the dynamics (or steady 

state) of the FOMs of interest. Therefore, such models can accelerate analyses (greatly reduce the 

computational time), by replacing high-fidelity physical models with a ROM representation.  

6.2 Development of FMI/FMU exporting capabilities for RAVEN AI 

To exploit RAVEN AI capabilities, a workflow to export trained (constructed) ROMs using 

the FMI/FMU protocol was developed in RAVEN. 

The exporting of RAVEN AI is performed according to the following two steps: 

1) Exploit the native RAVEN serialization system, which is responsible for serializing (i.e., 

saving in a binary file) already-trained surrogate models that can be loaded in external 

(Python-based) packages (outside RAVEN).  

2) Use and extend the PythonFMU library (https://github.com/NTNU-IHB/PythonFMU), 

which is a lightweight framework that enables the packaging of Python 3 code as co-

simulation FMUs (following FMI version 2.0). 

To deploy any model in an FMI/FMU-compatible framework, that model (i.e., ROM) must 

be able to be inquired at each “time step,” meaning that the model must allow for execution as an 

integrated model and not as a “black-box simulation”. To achieve this goal, the RAVEN ROM 

APIs were upgraded by implementing a “method” to solve the surrogate model at each time step. 

This modification, in conjunction with the two steps reported above, allows for RAVEN ROM 

models to be exportable as FMI/FMUs. 

Once the RAVEN AI is trained following the standard process reported in section 6.1, it can 

be finally exported following the steps reported in Figure 45. An example of the RAVEN input 

blocks is reported in Figure 46, where: 

- In the <Models> node, the RAVEN ROM (AI) is shown. 

- In the <Files> node, the output FMI/FMU filename is specified. 

- In the < Steps> node, the trained ROM (input) is exported as FMI/FMU (output). 

 

Figure 45. RAVEN AI FMI/FMU exporting process. 

https://github.com/NTNU-IHB/PythonFMU
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Figure 46. Example RAVEN input file to export AI as FMIs/FMUs. 

The FMI/FMU exporting capability allows for the deployment of the scheme reported in 

Figure 47, where the RAVEN models can be used, as FMI/FMUs, in tandem with any 

Dymola/Modelica (in general) and HYBRID (in particular) physical models. 

 

Figure 47. RAVEN’s current FMI/FMU exporting capabilities. 
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Figure 48. RAVEN hybrid model scheme. 

6.3 Future Extension of the FMI/FMU Exporter to the RAVEN Hybrid 

Model 

In previous sections, the creation and export of RAVEN AI was discussed. ROM usage is an 

approach that can drastically reduce the computational time of analyses and accelerate 

deployment of models. To obtain the optimal prediction capability, the ROM must be 

constructed and applied only within the domain of its training set; in other words, the ROM can 

guarantee valid predictions only within (or slightly outside) the boundaries of its training set. For 
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example, if a ROM is trained by perturbing a temperature between 500 and 600 K, the ROM 

should not be used for predicting a system response at 1000 K. 

RAVEN includes an advanced capability called the “hybrid model” to tackle this problem. 

Indeed, this model is a special class of algorithms aimed to couple in-tandem, high-fidelity 

physical and mathematical models (e.g., FMI/FMU Dymola models) and AI algorithms (e.g., 

ROM, AI). The AI is trained based on the results from the high-fidelity model. The global 

accuracy of the AI is evaluated based on cross-validation scores, and the local (e.g., prediction) 

validity is determined via certain local validation metrics (i.e., metrics aimed to assess the 

confidence of the AI predictions). Once the AI is trained, the hybrid model can decide which 

model (i.e., the AI or high-fidelity model) to execute, based on the aforementioned accuracy and 

validation metrics. Figure 48 shows the scheme behind the hybrid model formulation. Since the 

predictions of the surrogate model are assessed in terms of accuracy, this algorithm discards 

ROM predictions if they fall outside its training set boundaries or the response confidence is too 

low. In such cases, the high-fidelity model is used and the ROM training set updated. 

In the next steps for this program, the “hybrid model” capability will be leveraged in tandem 

with the FMI/FMU exporting protocol in order to accelerate the execution of systems that 

include multiple FMI/FMUs, allowing for the deployment of models that are able to 

autonomously switch between RAVEN AI and Dymola models during analyses. Each FMI/FMU 

will be coupled in a hybrid model configuration, resulting in accurate modeling and CPU time 

saving. 

7. Integrated Energy Park Demonstration Case 

To demonstrate the full range of capabilities described in this report, a final test case on an 

integrated energy park was conducted. The integrated energy park, shown in Figure 49, consists 

of a nuclear reactor, electric batteries, and a natural gas turbine. The natural gas turbine is the 

component to be exported as an FMU. The natural gas peaking turbine will then be replaced with 

its own FMU from three different sources: the Dymola FMU in both model exchange and co-

simulation, then a RAVEN-based surrogate using co-simulation mode. 
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Figure 49. Integrated energy park consisting of a nuclear reactor (NPP), Energy Manifold (EM), Balance 

of Plant (BOP), Switch Yard (SY), Electric Batteries (Battery), Infinite Grid (IG), and a Natural Gas 

turbine (NG). The natural gas turbine is to be exported as an FMU. 

7.1 FMI/FMU Creation and Use within Dymola 

As outlined in earlier sections of this report, the natural gas turbine model needs to be 

modified with an electric power adaptor and an input demand signal in order to ensure that all 

the variables contained in the flow ports are realigned into real input/output variables. 

The adaptors outlined in the previous sections can be used to accomplish these modifications. 

For the natural gas turbine example, illustrated in Figure 50, the electric port must be converted 

into real inputs/outputs using the PowerFlowToFrequency adaptor previously described. In 

addition, the control system of the natural gas turbine requires a top-level demand signal to 

communicate the grid demand at each time interval. To implement this communication into the 

model, an additional real input variable, “SES_Demand,” was created. With the adaptor and the 

new input signal created, the model is ready to be exported as an FMU. 

This procedure of using an adaptor to transform ports into their real components and creating 

additional inputs/outputs for declared variables works well for simple models and models 

intended to be used in model exchange mode. For complex models planned for simulation in co-

simulation mode, use of adaptors may prove challenging if the initialization of the models is not 

well-defined. This is due to the explicit nature of co-simulation modeling. 
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Figure 50. Preparing the natural gas turbine for conversion into an FMU. The inputs into the system are 

the peaking demand and connection points for electricity backflow into the turbine model. The output is 

the electrical power as a real value. 

Once the model has been exported using the Dymola interface, it can then be re-imported 

into the program and can replace the natural gas turbine model. Since the FMI consists of three 

inputs and one output, the three inputs must be specified by the user. To accomplish this, the 

FrequencytoPowerFlow adaptor was placed in the Modelica model along with a “real” 

expression to connect the turbine demand to the FMI/FMU, as shown in Figure 51. 

Using this version of the FMI/FMU, three separate 5-hour simulations were run: one with 

Modelica-only input, one with a co-simulation version of the gas turbine, and one in model 

exchange mode. The results of this simulation set are depicted in Figure 52. Over the course of 

the full 5-hour simulation, the results are all in near-perfect agreement with the setpoints, with 

the model exchange and Dymola results being basically identical, and co-simulation being only 
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as accurate as the communication step of 1 second would allow. However, of note is that, while 

the Dymola and model exchange versions of the model completed in 121.3 and 156 seconds, 

respectively, the co-simulation model took far longer to solve (a total of 642 seconds). This 

increased simulation time can be attributed to the additional communication time between the 

models as well as the additional initialization routine required by the solvers. 

 

Figure 51. Integrated energy park consisting of a nuclear reactor, electric batteries, and a natural gas 

turbine replaced by a co-simulation FMU. 
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Figure 52. Top) Five-hour simulation of the natural gas turbine power vs. setpoint demand for the 

integrated energy park in regard to Modelica-only model, co-simulation FMI, and model exchange FMU. 

Bottom) Closeup shot of the turbine demand vs. turbine output for the different FMI versions. Note that 

all agree reasonably well. Co-simulation communication interval = 1 second. 
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7.2 Creation of Surrogate Using RAVEN 

Due to the large increase in simulation time, the relative issues with co-simulation 

initialization routines, and the fact that there is no feedback to the rest of the grid, the FMI 

created for use in the RAVEN surrogate training was reduced to having only a single input 

(turbine demand) with no connected outputs. This setup allows the natural gas turbine to keep all 

the initialization pieces of the “infinite” grid self-contained, thus drastically improving the 

initialization routine and system robustness. Since the turbine power is a variable given by the 

FMU, and no feedback is used in other units’ control systems, the turbine power was not 

required to be an external variable for the initial export. The FMI/FMU (GTTP.fmu) exported to 

RAVEN is shown in Figure 53. 

 

Figure 53. Simplified model of the FMI for RAVEN surrogation. 

To construct a RAVEN-based AI to surrogate the response of the turbine component, the 

FMIFMU RAVEN importer described in Section  was used to drive the Dymola-exported 

FMI/FMU model. 

Since the turbine’s response to changes in the demand is very quick (very limited inertia) and 

almost perfectly linear, a Support Vector Regressor with linear kernel Error! Reference source n

ot found. was selected for surrogating the response. The turbine FMI/FMU GTTP.fmu was 

loaded via the FMIFMU RAVEN importer and its demand sampled (1,000 Monte Carlo 

samples) between 0 and 35 MW to capture the model’s full domain of variability. Finally, the 

Support Vector Regressor was trained (constructed) and exported to a “brand-new” FMI/FMU 

(GTTProm.fmu) by the RAVEN FMI/FMU exporter (co-simulation), as described in Section 6.2. 

To validate the RAVEN AI FMI/FMU, a cross-validation assessment was performed in 

RAVEN, and, due to the pure linearity of both the turbine and AI models, its average R2 score 
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was >0.99. This is further demonstrated in Figure 54 and Figure 55 which show a comparison of 

the Dymola-generated turbine FMI/FMU and the RAVEN AI FMI/FMU, with the models 

demonstrating good agreement. 

 

Figure 54. Comparison of the Modelica/Dymola GTTP.fmu response (P_flow) and the RAVEN AI-based 

GTTProm.fmu. 
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Figure 55. Closeup of the comparison of the Modelica/Dymola GTTP.fmu response (P_flow) and the 

RAVEN AI-based GTTProm.fmu. 

7.3 Comparison of Results 

Section 7.2 described the process of constructing an AI model exported in an FMI/FMU from 

RAVEN. To demonstrate the concept of the “plug-and-play” framework, along with the usage of 

AI for accelerated analysis, the integrated energy park model was simulated, both using the 

original Dymola model (FMI/FMU) for the gas turbine and using the RAVEN AI-based model. 

Figure 56 shows the integrated energy park FMI/FMU exported via Dymola. Among the 

different variables and outputs is the model fulfillment of the gas turbine model’s demand. Such 

output represents the link between the IES park, and the turbine chosen for the demonstration. 

Figure 57 and Figure 58 show the setup of the integrated energy park along with the detailed 

Dymola FMI/FMU and the RAVEN AI-based FMI/FMU, respectively. Both models were 

simulated in an ad-hoc Python code (master simulator) using the FMPy package. 

Using the above-mentioned FMI/FMU setup, the two 5-hour simulations were run in the 

master simulator (Python code using FMPy). Since the RAVEN AI-based FMI/FMU can be 

evaluated in mere milliseconds, the simulation of the setup with the AI was much faster (~20%) 

to complete, making the computation time for the turbine evaluation completely negligible; 

indeed, the AI FMI/FMU almost zeroed out the CPU time for the turbine simulation, and the 

totality of the CPU time was used to simulate the remaining systems in the integrated energy 

park, which were more complex and computationally intensive. 

Figure 59 and Figure 60 show a comparison of the turbine responses in the integrated energy 

park using the Dymola FMI/FMU and the RAVEN AI-based FMI/FMU. Over the course of the 

full five-hour simulation, all the results were in near-perfect agreement with the setpoints. The 
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results show that the setup using the RAVEN AI FMI/FMU outperformed (in terms of speed) the 

Dymola model, with no loss of accuracy. 

 

 

Figure 56. Integrated energy park (excluding the turbine) FMI/FMU generated with Dymola. 
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Figure 57. Integrated energy park FMI/FMU, including the Dymola GTTP model. 
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Figure 58. Integrated energy park FMI/FMU, replacing the Dymola GTTP model with the RAVEN AI-

based FMI/FMU. 

 

Figure 59. Co-Simulation FMI/FMU (Dymola) vs. RAVEN AI-based FMI/FMU for a 5-hour simulation 

of the turbine power vs. setpoint demand for the integrated energy park. 
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Figure 60. Co-Simulation FMI/FMU (Dymola) vs. RAVEN AI-based FMI/FMU closeup shot of turbine 

demand vs turbine output. 

 

8. CONCLUSION 

This report describes the status of the flexible plug-and-play framework development for 

design, analysis, and optimization of integrated energy systems. This framework seeks to 

integrate Modelica and Dymola with RAVEN in terms of both FMI/FMU construction and 

repository structures intended to simplify model sharing and simulation of complex dynamic 

systems. 

The report provides an in-depth look at the alterations needed to modify existing system-

level models for exportation as FMUs. These alterations include modifying specialty “port” 

variables into their constituent parts as real variables via a new FMI adaptor package added to 

the existing HYBRID repository. This package includes new adaptors for electrical, fluid, and 

heat ports for export into the FMIs/FMUs. Examples were included within the FMU adaptor 

package, illustrating how to properly utilize the system. Several of these examples are discussed 

in Section 2 of this report. 

Simulation results demonstrate that, while minor differences may occur, the overall control, 

trends, and solution integrity is maintained between the standard Modelica simulation and FMU 

simulation results. However, it is worth noting that, for small systems, the FMU results have a 

slower simulation time than the Modelica-only simulation. While this step-by-step process does 

require several levels of checks, it provides a degree of system flexibility never before 

experienced. Using this process, a company can provide models that contain proprietary 

information to separate entities, without disclosing any information about the model that could 
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be considered business sensitive. Such a capability would allow institutions to bypass the 

necessity of having to “whitewash” data. 

In addition to the investigative work being conducted on FMUs and FMIs, a series of updates 

to the HYBRID repository regression system was completed to ready the repository for open-

sourcing. These updates include additional system-level tests for components in the HYBRID 

repository, as well as increasing the testing level from a mere six tests to 32 and counting. 

Further, new features have been included in the testing system, such as an initialization 

subroutine for Dymola models that helps highly nonlinear complex systems initiate their 

regression test. Additionally, the output keys “numberOfIntervals” and “OutputInterval” were 

added to the regression system, allowing for consistent comparison points between the reference 

file and the simulation results between machines. This step is necessary because the commercial 

Modelica platform Dymola has a series of global output flags that are rarely consistently utilized 

from one organization to another, yet do not change the trajectories of the solution. 

Finally, the work that was deployed to simulate, export, and use FMI/FMU in conjunction 

with AI algorithms in RAVEN represents a significant step forward in regard to delivering a 

streamlined process to accelerate simulations and analysis by leveraging RAVEN advanced 

algorithms. The possibility of using AI exported in FMI/FMU in any FMI/FMU-compatible 

framework (e.g., FMPy and Dymola) is unique to this framework, posing the basis for 

deployment of fast simulation, modeling, and analysis accelerations. 

Overall, extensive work was completed to develop FMUs and FMIs from existing models 

and gaining greater understanding of the requirements and limitations of FMI/FMUs.  

 

9. FUTURE WORK 

The activities described in this report show the potential of the concept of a “flexible plug-

and-play ecosystem” being developed within the IES program and deployed via the creation of 

FORCE. In order to fulfill the promises of FORCE, several tasks are planned to be carried out in 

the future of the program: 

1) Master Simulator development in RAVEN: in order to automate the deployment of 

models in a system that is compatible with any FMI/FMU interface, an entity (Master 

Simulator) needs to be developed within RAVEN. Such development will allow for the 

simulation of FMI/FMU models (AI, Dymola, etc.) directly within the RAVEN 

framework allowing for the integration of such models in any RAVEN workflow, in 

general, and in IES technoeconomic analysis, in particular. The Master Simulator in 

RAVEN will be based on the EnsembleModel entity (see sec. 5.2), in conjunction with 

the FMPy library. The Master Simulator is shown in Figure 61. 
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Figure 61. Proposed master simulator within RAVEN. 

 

2) Model Exchange for RAVEN-based models: in section 6.2 the deployment of a system 

for exporting RAVEN-based AI as FMI/FMU leveraging, the PythonFMU library has 

been shown. However, the current library only supports FMI/FMU in co-simulation, 

useful for loosely coupled models but inadequate for tightly coupled systems. To allow 

for exporting of nonlinear models (e.g. Nuclear Reactor Balance of Plant, Storage, etc.), 

the PythonFMU library needs to be upgraded to allow for exporting models in model 

exchange and, consequentially, leverage the capability of RAVEN AI to provide first and 

second order derivative information. 

3) Integration of the FARM supervisory control model: Argonne National Laboratory, in 

collaboration with Idaho National Laboratory, recently released a RAVEN plugin called 

Feasible Actuator Range Modifier (FARM) [14],[15]. This plugin oversees deploying 

supervisory bounding control for dynamic models to ensure physical limitations of the 

model are not exceeded. This is an additional layer of control on top of the existing 

physical modeling control systems. While control is still imposed for each individual 

process, FARM can identify demand signals that cannot be met within safety limits and 

augments the demand to meet safety specifications.  For the FORCE framework to 

deploy these supervisory controllers the model needs to be exported as FMI/FMU and 

integrated into the plug-and-play framework. 

4) Integration of the HERON plugin: INL has been developing the Holistic Energy 

Resource Optimization Network (HERON) plugin to construct workflows for solving 

resource allocation problems inherent to the electrical grid. This plugin oversees the 

allocation of energy resources within integrated energy systems. The idea of FORCE is to 

connect HERON with FARM, RAVEN, and HYBRID to solve real world energy 

allocation problems. With the work completed in FY 2020 the next step is to develop the 
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interconnection between these different platforms and ensure simulation speed is capable 

of solving real world problems.  

Additional investigative work is planned in order to expand the FMU capabilities within the 

existing HYBRID repository framework. 
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APPENDIX A – HYBRID USER MANUAL 
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1. PURPOSE 

Software quality assurance (SQA) is a set of activities necessary to provide adequate 

confidence that a software item or product conforms to the set of functional and technical 

requirements specified for that item. This plan presents the required activities to enable 

consistent SQA implementation within the HYBRID Software. It provides a standardized 

method of capturing software requirements, how those requirements will be 

implemented, how the software will be tested, how changes to the software will be 

controlled, and how software deficiencies will be handled. This Software Quality 

Assurance Plan (SQAP) establishes the software Quality Assurance program for 

HYBRID.  It covers the periods of software development, maintenance and operations 

(M&O), and retirement.  It implements applicable requirements in conformance with 

PDD-13610, “Software Quality Assurance”. This plan is based on the RAVEN SQA 

process, documented in “PLN-5552, RAVEN and RAVEN Plug- ins Software Quality 

Assurance and Maintenance and Operations Plan”. The HYBRID software process 

follows the PLN-5552 and in this document, the deviations from such plan are 

documented. 

1.1 HYBRID Description 

One of the goals of the HYBRID software/product is to assess the economic viability of 

hybrid systems in a market that contains renewable energy sources (e.g. wind, solar, etc.). 

The hybrid system would be a nuclear reactor that not only generates electricity, but also 

provides heat to another plant that produces by-products, like hydrogen or desalinated 

water. The idea is that the possibility of selling heat to a heat user absorbs (at least part 

of) the volatility introduced by the renewable energy sources. 

The HYBRID software/product is a container of systems/components models and 

analysis workflows for the deployment of a “plug and play” framework aimed to 

integrate Modelica/Dymola [see def.] with RAVEN in terms of both FMI/FMU [see def.] 

construction and repository structure that aims to ease the sharing and simulation of 

complex dynamic models.   

HYBRID is operational within multiple projects. Ongoing support of HYBRID is 

required for the purpose of adding functionality, correcting model errors and improving 

the performance of the HYBRID models and analysis flows.  

- HYBRID is maintained by a team of scientists/researchers, referred to herein as the 

HYBRID core team (see def.). HYBRID maintenance and operations, performed by 

the HYBRID core team, is an ongoing activity.  

- This plan covers the maintenance of all existing and future components of HYBRID.  

This includes, but is not limited to, servers, server software, user workstations, 

HYBRID software, and control documents.  Changes to this document will be 

completed through the Electronic Change Request (eCR) process. 
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1.2 Software Lifecycle 

HYBRID is using an Agile life cycle methodology.  The life cycle will be 

performed in an iterative manner and address the requirements, design, 

implementation, testing, installation and checkout, operations and maintenance, 

and retirement phases. 

1.3 Assumption and Constraints 

- The HYBRID core team will adhere to LWP-1303, “Management of 

Unclassified Cyber Security Information Systems” and LWP-1401, 

“Preparing and Releasing Scientific and Technical Information Products,” 

where applicable.  

- 29 USC 794d, Section 508 of the Workforce Investment Act of 1998 

considerations will be made for the ability of disabled individuals to access 

the information or service provided by the software.  

- INL will manage the software with support from vendors (for acquired 

software [see def.]) until the software is retired.  

- Software vendor support agreements are maintained.  

- For firmware, changes to acquired software including software updates and 

security patches will be implemented by the product vendor.  

- The hardware that serves HYBRID is managed by the High-Performance 

Computing Group. The hardware is considered a configuration item (see def.) 

for the HYBRID asset, and changes impacting the HYBRID software must be 

reviewed by the HYBRID technical lead or designee; however, the 

management of the hardware is outside the scope of this plan.  

-  

1.4  Deviation Policy 

All deviations from this plan require management approval. Whether planned or 

unplanned, if any deviation from this plan is necessary, the following components 

will be determined:  

- Identification of task affected.  

- Reasons for deviation defined.  

- Effects on the quality of the project.  

- Time and resource constraints affected.  

A deviation report will be generated, and authorization will be required. 

Deviations that violate requirements must be documented within the relevant 

issue.  
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2. REFERENCES  

The following source documents apply to this SQAP: 

• 29 USC 794d, Section 508 Workforce Investment Act of 1998 

• INL/EXT-18-44465, “RAVEN User Documentation” 

• ISO/IEC/IEEE 24765:2010(E), “Systems and software engineering — 

Vocabulary” 

• PDD-13610, “Software Quality Assurance Program.” 

• PDD-13000, “Quality Assurance Program Description” 

• LWP-1201, “Document Management” 

• LWP-1202, “Records Management” 

• LWP-1305, “Acquisition of Computer Hardware/Software Resources” 

• LWP-1306, “Management of IT Asset Minimum Security Configurations,” Rev. 

1, December 23, 2013. 

• LWP-1401, “Preparing and Releasing Scientific & Technical Information 

Products” 

• LWP-4001, “Material Acquisitions” 

• LWP-4002, “Service Acquisitions” 

• PLN-5552, “RAVEN and RAVEN Plug- ins Software Quality Assurance and 

Maintenance and Operations Plan” 

• PLN-4653, “INL Records Management Plan” 

• SDD-561, “HYBRID Software Design Description (SDD)” 

• SPC-2990, “HYBRID Software Requirements Specification (SRS) and 

Traceability Matrix” 



 

 

 

 

 

 

121 

 

 

 

    Form 412.09 (Rev. 10) 

 Idaho National Laboratory    

 

HYBRID SOFTWARE QUALITY 

ASSURANCE & M&O PLAN 

Identifier: 

Revision: 

Effective Date: 

PLN-6274 

 0 

 10/01/2020 

 
Page: 6 of 26 

3. DEFINITIONS AND ACRONYMS 

This section defines, or provides the definition of, all terms and acronyms required to 

properly understand this plan. 

3.1 Definitions 

Acquired software. Software generally supplied through basic procurements, two- 

party agreements, or other contractual arrangements. Acquired software includes 

commercial off-the-shelf software, support software such as operating systems, 

database management systems, compilers, software development tools, and 

commercial calculational software and spreadsheet tools (e.g. Microsoft’s Excel). 

Downloadable software that is available at no cost to the user (referred to as 

freeware) is also considered acquired software. Firmware is acquired software. 

Firmware is usually provided by a hardware supplier through the procurement 

process and cannot be modified after receipt.  

Agile development.  Agile development is an approach to software development 

under which requirements and solutions evolve through the collaborative effort of 

self-organizing and cross-functional teams and their customer(s)/end user(s). It 

prescribes adaptive planning, continuous development, early delivery, and 

continual improvement, and it encourages rapid and flexible response to change.  

Anomaly. Anything observed in the documentation or operation of software that 

deviates from expectations based on previously verified software products or 

reference documents.  

Baseline. A specification or product that has been formally reviewed and agreed 

upon, that thereafter serves as the basis for use and further development, and that 

can be changed only by using an approved change control process. [ASME 

NQA-1-2008 with the NQA-1a-2009 addenda] 

Change control. An element of configuration management, consisting of the 

evaluation, coordination, approval or disapproval, and implementation of changes 

to configuration items (CIs see def.) after formal establishment of their 

configuration identification. [ISO/IEC/IEEE 24765:2010(E)]  
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Change control board (CCB). The group by which a change is proposed, 

evaluated, approved or rejected, scheduled, and tracked. This board is also 

responsible for evaluating and approving or disapproving proposed changes to 

configuration items (CIs) and implementation of approved changes when 

required.  

Change requests (CRs). CRs can be initiated by anyone, including off site users, 

and can be used for maintenance (fine-tuning and problem resolving), new 

development, and enhancements, or can be used to report program errors and 

problems.  

Change request log. A log that provides a listing of all the change requests and 

the change request status used for application software, system software, and 

hardware configuration control.  

Commercial off-the-shelf. (COTS) Usually refers to software purchased from a 

vendor “as-is” with minimal customization or configuration options that meets a 

requirement. 

Configuration Control. An element of configuration management, consisting of 

the evaluation, coordination, approval or disapproval, and implementation of 

changes to configuration items after formal establishment of their configuration 

identification. [ISO/IEC/IEEE 24765:2010(E)] 

Configuration identification. An element of configuration management, 

consisting of selecting the configuration items (see def.) for a system and 

recording their functional and physical characteristics in technical documentation.  

Configuration item (CI). An item or aggregation of hardware or software 

(including documentation) or both that is designed to be managed as a single 

entity (ISO/IEC/IEEE 24765:2010(E) edited).  

Configuration management. A discipline applying technical and administrative 

direction and surveillance to identify and document the functional and physical 

characteristics of a configuration item (see def.), control changes to those 

characteristics, record and report change processing and implementation status, 

and verify compliance with specified requirements (ISO/IEC/IEEE 

24765:2010[E]).  

Configuration Management (see def.) consists of activities to control and manage 

changes to items that have a baseline (see def.).  It includes the process of 

identifying the configuration items (CIs) (see def.) in a system, controlling the 

release and change of these items, and recording and reporting the status of the 

CIs and their associated change requests. 
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Continuous Integration System (CIS). A system, linked to a central version 

control repository, such as GitHub and GitLab (see def.), aimed to automatically 

build and test a targeted software. Examples are CIVET, Jenkins, and GitLab 

Continuous Integration. 

Custom-built IT assets. Information technology (IT) assets designed, developed, 

or modified internally or by a qualified subcontractor through the procurement 

process. Examples include custom-developed (see def.) or customized software, 

spreadsheet, and calculation and analysis applications (e.g., computer models), the 

implementation of a new network infrastructure or IT technology (e.g., Gmail, 

Internet Protocol Version 6, Internet Explorer 9). [Developed for internal 

laboratory use]  

Custom-developed software. Software built specifically for a DOE application or to 

support the same function for a related government organization. It may be 

developed by DOE or one of its M&O contractors or contracted with a qualified 

software company through the procurement process. Examples of custom-

developed software include material inventory and tracking database applications, 

accident consequence applications, control system applications, and embedded 

custom-developed software that controls a hardware device. 

Defect. An error, fault or failure in a computer program or system that causes it to 

produce an incorrect or unexpected result, or to behave in unintended ways. 

Doxygen. Standard tool for generating documentation from annotated C, C++, 

Fortran and Python sources.  

Dymola. Dymola is a commercial modeling and simulation environment based on 

the open Modelica modeling language, Developed by the European company 

Dassault Systèmes. 

Electronic Document Management System (EDMS). System approved for long- 

term storage, management, and maintenance of electronic and hardcopy records.  

Enterprise Architecture (EA) Repository. An Oracle database that houses 

information about software applications and servers and is the source for the INL 

data dictionary. The applications are related to the management system business 

functions it supports or implements. EA is the repository for the technology 

(e.g., software/hardware) used to construct and implement software applications. 

EA contains links to the software documentation stored in EDMS (see def.) and 

includes a list of software owners.  

FMI. The Functional Mock-up Interface (or FMI) defines a standardized interface 

to be used in computer simulations to develop complex cyber-physical systems. 
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FMU. Based on an FMI, the FMU is an executable called a Functional Mock-up 

Unit (FMU), which is “driven” by an FMI. A simulation environment can use the 

FMI to create an instance of the FMU and simulate it together with other FMUs 

or models native to the simulation environment. 

GitHub. A web-based revision control hosting service for software development 

and code sharing. GitHub provides additional tools such as documentation 

generation, issue tracking, Wikis, nested task-lists within files, etc.  

GitLab. A web-based revision control hosting service for software development 

and code sharing similar to GitHub. The CIS (see def.) connects to both the 

external and internal GitHub/GitLab to perform software builds.  

Issue. Issues can be initiated by anyone, including off site users, and are used for 

maintenance (fine-tuning and problem resolving), new development, 

enhancements, or can be used to report program errors and problems.  

Issue (GitHub). As defined for the GitHub environment, issues are suggested 

improvements, tasks, or questions related to the repository. Issues can be created 

by anyone (for public repositories) and are moderated by repository collaborators. 

Each issue contains its own discussion forum and can be labeled and assigned to a 

user/developer.  

Major Change. A revision to software that, in the best judgment of authorizing 

personnel, has the potential to compromise the accuracy/validity of the output 

data, and as a result, could diminish the margin of safety to the public, worker, or 

environment.  

Method. A reasonably complete set of rules and criteria that establish a precise 

and repeatable way of performing a task and arriving at a desired result. [The 

Configuration Management Manual Guideline for Improving the Software 

Process, Carnegie Mellon University Software Engineering Institute, 1995]  

Minor Change. A revision to software that, in the best judgment of authorizing 

personnel, will not compromise the accuracy/validity of the output data and will 

not diminish the margin of safety to the public, worker, or environment. 

Modelica. Object-oriented, declarative, multi-domain modeling language for 

component-oriented modeling of complex systems, e.g., systems containing 

mechanical, electrical, electronic, hydraulic, thermal, control, electric power or 

process-oriented subcomponents. 

Open source. Denoting software for which the original source code is made freely 

available and may be redistributed and modified.  
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Pull requests. Pull requests can be initiated by anyone, including off-site users, and 

are used for maintenance (fine-tuning and problem resolving), new development, 

enhancements, or can be used to address program errors and problems.  Pull 

requests allow informing others about changes pushed to a repository on a version 

control system (see def.). Once a pull request is sent, interested parties can review 

the set of changes, discuss potential modifications, and even push follow-up 

commits if necessary, as well as integrate changes into the maintained code. 

Quality grade. The grade applied to the level of quality activities to be applied to 

the specific task or activity. Current quality grades are Nuclear Use QL and 

Commercial Use Quality Levels (QLs) High, Medium, and Low. 

RAVEN core team. INL personnel who are in charge of the development of the 

RAVEN framework or software applications/extensions/plugins that are based on 

the RAVEN framework. A list of the current components of the RAVEN core 

team can be found at https://github.com/idaholab/raven/wiki/AboutUs#raven-

core-team 

HYBRID core team. INL personnel who are in charge of the development of the 

HYBRID software applications/extensions that are based on the HYBRID 

software. A list of the current components of the HYBRID core team can be 

found at https://github.com/idaholab/HYBRID/-/wikis/About-Us  

RAVEN Software. Open source software that resides in a public repository 

(GitHub) that provides the capabilities needed to perform Uncertainty 

Quantification, Probabilistic Risk Assessment, Data Analysis, Validation and 

Parameter Optimization. 

HYBRID Software. Collection of software/models/analysis workflows that resides 

in a public repository (GitHub) that provides the for the deployment of a “plug 

and play” framework aimed to integrate Modelica/Dymola with RAVEN in terms 

of both FMI/FMU construction and repository structure that aims to ease the 

sharing and simulation of complex dynamic models.   

Regression testing. Selective retesting of a system or component to verify that 

modifications have not caused unintended effects and that the system or component 

still complies with its specified requirements. 

Retirement. Permanent removal of an asset (e.g., system or component) and 

associated support from its operational environment. 

[ISO/IEC/IEEE Std 24765-2010 edited] 

Safety function. The performance of an item or service necessary to achieve safe, 

reliable, and effective utilization of nuclear energy and nuclear material processing. 

For INL, safety functions are identified and defined in a formal safety basis or 
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commitment document as credited for achieving nuclear safety (e.g., safety 

structures, systems, and components; safety significant; safety class; safety related; 

or important to safety) (ASME NQA-1-2008 with the NQA-1a-2009 addenda 

edited). 

Software. Computer programs and associated documentation and data pertaining 

to the operation of a computer system and includes application software and 

support software. 

Software life cycle. The activities that comprise evolution of software from 

conception to retirement. The software life cycle typically includes the activities 

associated with requirements, design, implementation, test, installation, operation, 

maintenance, and retirement.  

Software quality assurance. All actions that provide adequate confidence that 

software quality is achieved.  

Software tool. A computer program used in development, testing, analysis, or 

maintenance of a program or its documentation. Examples include comparators, 

cross-reference generators, compilers, computer-aided software-engineering tools, 

configuration and code management software, flowcharters, monitor test case 

generators, and timing analyzers.  

Support software. Software tools (see def.) and system software (see def.).  

System software. Software designed to facilitate operation and maintenance of a 

computer system and its associated programs (e.g., operating systems and 

utilities).  

System testing. Testing conducted on a complete, integrated system to evaluate 

the system’s compliance with its specified requirements.  

Task (GitHub). A suggested improvement or feature enhancement.  

Test case. (1) A set of test inputs, execution conditions, and expected results 

developed for a particular objective, such as to exercise a particular program path 

or to verify compliance with a specific requirement. (2) Documentation 

specifying inputs, predicted results, and a set of execution conditions for a test 

item.  

User documentation. Instructions for use describing the capabilities and intended 

use of the software within specified limits. May also include a theory manual, 

when relevant.  
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Validation. Confirmation, through the provision of objective evidence (e.g., 

acceptance test), that the requirements for a specific intended use or application 

have been fulfilled. [ISO/IEC/IEEE 24765:2010(E) edited].  

Verification. (1) The process of evaluating a system or component to determine 

whether the products of a given development phase satisfy the conditions imposed 

at the start of that phase. (2) Formal proof of program correctness (e.g., 

requirements, design, implementation reviews, system tests). 

[ISO/IEC/IEEE 24765:2010(E) edited]  

Version Control System. It is the system aimed to support the management of 

changes to files, in general, and computer programs, in particular. Changes are 

usually identified by a number, letter code or unique alphanumeric identifiers, 

termed the "revision number", "revision level", or simply "revision". Each 

revision is associated with a timestamp and the person making the change. 

Revisions can be compared, restored, and with some types of files, merged. 

Examples of Version Control Systems are GitHub and GitLab (see def.) 

3.2 Acronyms 

ASME American Society of Mechanical Engineers 

BEA Battelle Energy Alliance 

CCB Change Control Board 

CFR  Code of Federal Regulations 

CI Configuration Item 

CIS Continuous Integration System 

CM Configuration Management 

CMP Configuration Management Plan 

COTS Commercial off-the-shelf software 

CR  Change Request 

CSV Comma Separated Value  

DOE Department of Energy 

EA Enterprise Architecture 
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EDMS Electronic Document Management System 

FMI Functional Mock-up Interface 

FMU Functional Mock-up Unit 

IAS Integrated Assessment System 

IEC International Electrotechnical Commission 

IEEE Institute of Electrical and Electronics Engineers 

INL Idaho National Laboratory 

ISMS  Integrated Safety Management System 

ISO International Organization for Standardization 

IT Information Technology 

LST   List 

LWP   Lab-wide Procedure 

M&O Maintenance and Operations 

NQA Nuclear Quality Assurance 

POSIX  Portable Operating System Interface 

PRA  Probabilistic Risk Assessment 

QA Quality Assurance 

QL Quality Level  

QLD Quality Level Determination 

RTM Requirement Traceability Matrix 

RAVEN Risk Analysis and Virtual ENvironment 

SRS Software Requirements Specification 

SSD Safety Software Determination 

SQA Software Quality Assurance 



 

 

 

 

 

 

129 

 

 

 

    Form 412.09 (Rev. 10) 

 Idaho National Laboratory    

 

HYBRID SOFTWARE QUALITY 

ASSURANCE & M&O PLAN 

Identifier: 

Revision: 

Effective Date: 

PLN-6274 

 0 

 10/01/2020 

 
Page: 14 of 26 

SQAP Software Quality Assurance Plan 

USGCB  U.S. Government Configuration Baseline 

V&V Verification and Validation 

4. MANAGEMENT 

The MANAGEMENT plan of the HYBRID Software fully adheres with the one spelled 

out in the PLN-5552, “RAVEN and RAVEN Plug-ins Software Quality Assurance and 

Maintenance and Operations Plan” (replacing the word RAVEN with HYBRID). 

5. CONFIGURATION MANAGEMENT 

The CONFIGURATION MANAGEMENT plan of the HYBRID Software fully adheres 

with the one spelled out in the PLN-5552, “RAVEN and RAVEN Plug-ins Software 

Quality Assurance and Maintenance and Operations Plan” (replacing the word RAVEN 

with HYBRID). The HYBRID configuration items’ list can be found in LST-1296. 

6. SUBCONTRACTOR.VENDOR  

No subcontractors/vendors activities are envisioned for HYBRID Software. In case of a 

new strategy, involving subcontractors, is defined, this plan will be revised. 

7. DOCUMENTATION 

The purpose of this section is to define the minimum documentation required to properly 

implement the SQA requirements. At all times during the life cycle of HYBRID, the 

following documents will be maintained as part of the Asset Portfolio. 

7.1 Minimum Documentation Requirements 

As a minimum, the following documentation is required for the HYBRID 

software. These documents are managed as records in accordance with Section 

15, “RECORDS COLLECTION, MAINTENANCE, AND RETENTION.”   

The following documentation is required as a minimum: 

Document Record Location ID 

Software Quality Assurance Plan 
Electronic Document 

Management System (EDMS) 
PLN-6274 

Software Test Plan and 

Verification & Validation 
GitHub PLN-6274 
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Software Requirements 

Specification and Traceability 

Matrix 

GitHub SPC- 2990 

Software Design Description GitHub SDD-561 

User Documentation (see def.) GitHub 
INL/MIS-20-60624  

 

7.2 Other Documentation 

In addition to the above documents, the following are created during the 

procurement and baselining of the project.  These may be used in support of 

Change Control Request implementation and M&O activities. 

• SSD-000753, “HYBRID Safety Software Determination” 

• QLD, “HYBRID Quality Level Determination” 

• HYBRID CTM Entry: 3C9B336C-8262-4790-AEBD-582B1BD85CF5 

All documents will be managed according to LWP-1201, “Document 

Management.” 

All records generated as part of this plan will be processed and managed 

according to LWP-1202, “Records Management.” 

8. STANDARDS, PRACTICES, CONVENTIONS, AND METRICS 

8.1 Content 

The standards for HYBRID are maintained/recorded in the HYBRID GitHub 

repository (Wiki section). Any developer of the HYBRID software need to be 

aware of the standards and to follow the development guidelines.  

The HYBRID standards evolve around the following macro-areas: 

- Software Coding Standards 

- Commentary Standards 

- Testing Standards and Practices 

8.1.1 Software Coding Standards 
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The HYBRID software imposes a coding standard on all source code 

within the repository. This standard is publicly maintained on the 

HYBRID GitHub repository wiki website 

(https://github.com/idaholab/HYBRID/-/wikis/HYBRID-Code-Standards 

) and enforced through the continuous integration testing system. 

8.1.2 Commentary Standards 

The HYBRID software imposes a commentary standard on all source 

code within the repository. The standard is aimed to fully describe any 

module/method in the source code, guaranteeing the automatic 

generation of software documentation via doxygen (see def.). This 

standard is publicly maintained on the HYBRID GitHub repository wiki 

website (https://github.com/idaholab/HYBRID/-/wikis/Hybrid-Software-

Commentary-Standard ) and enforced through the continuous integration 

testing system. 

8.1.3 Testing Standards and Practices  

The HYBRID software imposes a testing standard and practices on all 

the capabilities/methods of the HYBRID software. This standard is 

publicly maintained on the HYBRID GitHub repository wiki website 

(https://github.com/idaholab/HYBRID/-/wikis/HYBRID-Testing-

Standards-and-Practices) and enforced through the review process by a 

member of the CCB. 

9. SOFTWARE REVIEWS 

The SOFTWARE REVIEWS process of the HYBRID Software fully adheres with the 

one spelled out in the PLN-5552, “RAVEN and RAVEN Plug-ins Software Quality 

Assurance and Maintenance and Operations Plan” (replacing the word RAVEN with 

HYBRID). 

10. TESTING 

The goal of software validation (see def.) is to confirm that the requirements for a 

specific intended end use have been fulfilled.  Software verification (see def.) evaluates a 

system or component to confirm that specified conditions have been satisfied and 

provides formal proof of correctness. 

10.1 V&V Overview 

10.1.1 Test & V&V Objectives 

Test procedures or plans will specify the following as applicable: 
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• required tests and test sequence 

• required ranges of input parameters 

• identification of the stages at which testing is required  

• criteria for establishing test cases  

• requirements for testing logic branches  

• requirements for hardware integration  

• anticipated output values  

• acceptance criteria  

• reports, records, standard formatting, and conventions  

• performance testing  

Any developer, including externals, are responsible for ensuring the creation of a 

test case (see def.) that covers the new capability or code change. The CCB (any 

of its member not directly involved in the CR) is responsible, through the help of 

the Review Check Lists (see def.), for verifying that an appropriate test case is 

provided, and passes based on the supplied acceptance criteria. This verification is 

performed for any CR and failing to meet these requirements shall conclude in 

rejecting the CR by the CCB member/reviewer. The process for handling CRs that 

modify or add requirements is discussed in Section 5, Configuration Management 

Activities. 

HYBRID is open source (see def.) software that is maintained and stored in 

GitHub (see def.), a public repository. In order to align the testing and V&V 

activities of the software with the nature of the Agile development process (see 

def.), the verification of the software has been designed in a multi-stage 

automated testing suite, using the Continuous Integration System (CIS) (see def.) 

in GitHub. 

The main scope of the automated testing is to guarantee that any capability is 

properly tested and that new addition to the software do not impact the 

functionalities of the already-deployed capabilities. 

Four types of testing, unit, integration, system, and deployment, are covered by 

the HYBRID software. 
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The project manager/technical leader oversees the testing and verification and 

validation (V&V) activities, including the analysis of test coverage and the 

determination of when new tests are necessary. The test coverage analysis is 

performed during the code review activities conducted by the HYBRID core team 

(see def.), and it is determined at that step in the process if one or more new tests 

needs to be created. V&V activities are distributed among the HYBRID core team. 

Every time a new development or capability is performed by a software 

developer, the following shall be determined: 

• Required test activities and method of documentation (e.g., test plans, 

procedures, checklists, etc.); 

• Required support software (see def.) (e.g., automated test scripts, fault 

insertion tools, etc.); 

• Type and extent of required testing; and 

• Required reviews and approvals. 

A component (or more) of the change control board (CCB) (see def.), not being 

part of the development, shall review the correct documentation of the tests and 

ensure that the documentation includes approved requirements (when necessary) 

that have valid acceptance criteria. This documentation may include: 

• Documentation of the tests including acceptance criteria. The 

documentation procedure is defined in the HYBRID wiki page 

(https://github.com/idaholab/HYBRID/-/wikis/Developing-Regression-

Tests) 

• Software Requirements Specification or equivalent requirements 

document; 

• Requirements Traceability Matrix; 

• Software Design Description for guidance on testing methodologies and 

the operating environment (i.e., software, firmware, and hardware 

elements) to be used during testing; 

• User documentation (see def.) 

The CIS will verify that the provided documentation ensures that the software 

demonstrates adherence to the documented requirements and that the software 

produces correct results. 
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10.1.2 Master Schedule 

The V&V tasks (as captured in the automated tests) are executed 

automatically for every change to HYBRID software (i.e. source code).  

At several steps during the change commit process, automated tests are 

executed.  

10.1.3 Specific meaning of V&V activities for HYBRID software 

The HYBRID software contains modelica models that will be, if 

available, compared with experimental results. 

10.2 TYPES OF TESTS TO BE EXECUTED 

Tests are defined using an input file syntax, which specifies what the test should do, the 

inputs, and the post conditions for determining test success or failure; and assuring that 

the software produces correct results. The guidelines for the creation of a new test are 

reported in the HYBRID wiki page (https://github.com/idaholab/HYBRID/-

/wikis/Developing-Regression-Tests). Any test case that is connected with a requirement 

or modify/add a new requirement shall be tagged with the associated requirement ID.  

Acceptance Criteria for each test is defined by the Test type (defined below).  

The collection of Test types ensure that the software properly handles abnormal 

conditions and events as well as credible failures, does not perform adverse unintended 

functions, and does not degrade the system either by itself, or in combination with other 

functions or configuration items. 

The Test types and acceptance criteria for each are as follows: 

- CSVdiff: A test case that runs a simulation, terminates without error, and 

produces a previously defined comma separated value solution within a 

predefined tolerance (usually to at least single precision accuracy or better). The 

order of data in the CSV must exactly match the reference solution file. 

- UnorderedCSVDiffer: A test case that runs a simulation, terminates without error, 

and produces a previously defined comma separated value solution within a 

predefined tolerance (usually to at least single precision accuracy or better). The 

order of data (rows) in the CSV can be different with respect the previously 

defined file. Note: This Test is generally used when multiple parallel executions 

of an underneath model are performed, and the collection of the data can be 

unsynchronized depending on the latency of the network/machine. This test is 

only allowed if a parallel test is created. 

- TextDiff: A test case that runs a simulation, terminates without error, and 

produces a previously defined text file that matches a reference solution file.  
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- XMLDiff: A test case that runs a simulation, terminates without error, and 

produces a previously defined Extensible Markup Language (XML) solution 

within a predefined tolerance (usually to at least single precision accuracy or 

better). 

- RAVENImageDiff: A test case that runs a simulation, terminates without error, 

and produces a previously defined image or picture within a predefined tolerance 

(in terms of pixel difference). 

- RavenErrors: A test case that runs and produces a specified console output or 

output pattern and terminates with an expected error code or message. 

- DymolaMatDiff: A test case that runs a simulation, terminates without error, and 

produces a previously defined “. mat”  solution file within a predefined tolerance 

(usually to at least single precision accuracy or better).  

- HPCinteraction: A test case that runs a simulation in a High-Performance 

Computing System using its native Job Scheduler and Workload manager (e.g. 

Portable Batch System – PBS), terminates without error. 

In addition to the above reported Test types, for any CR the following tests are 

performed: 

- Documentation Test: The CIS tests that the User Documentation and SQA 

Documentation can correctly be generated. 

- Code Standard Validation: The CIS tests that all the source code is compliant with 

the RAVEN software coding standards (e.g. source code syntax, formats, 

documentation, etc.). 

- Code Coverage: The CIS tests that at least the 80% of the source code is tested by 

the test suite. 

10.3 Test Automation 

Testing is performed automatically as part of the CIS process when a user commits 

a change to the repository. The automated tests that are executed at subsequent 

steps in the process vary in scope and type and are described in Table 2. Tests of 

the framework across multiple platforms (operative systems and versions) are 

executed with each pull request (see def.).  

In order to pass acceptance testing, all test cases are expected to pass under the 

environments identified in the configuration items for HYBRID software. 
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Use of the automated tests is integrated directly into GitHub, and as such does not 

require additional training other than general familiarity with performing a pull 

request in GitHub. 

Results from each test execution are maintained in the CIS database, in an 

approved records repository along with results from the timing executions and 

code coverage.  

10.4 APPROVAL REQUIREMENTS 

The HYBRID software relies on a heavy automation of the verification and testing of any 

new or modified capability. This approach is required for the nature of the Agile 

development process. As mentioned in the previous section, any CR in the source code 

needs to be accompanied with a new (or modified) test to assess the correctness of the 

code and its functionality.  

Depending of the type of test case that is added or modified, two different approval 

processes are followed: 

10.5 Requirement tests 

This category is about to test any functionality that is linked to any new or 

assessed requirements. 

Table 3 - Requirement tests' responsibilities. 

Test Case Reviewer(s): Chair of the CCB, Technical Leader and 

Independent Reviewer (Member of the CCB) 

Test Result Reviewer and Approver: Chair of the CCB or Technical Leader and 

Independent Reviewer (Member of the CCB) 

Acceptance Test Case Reviewer(s): Chair of the CCB, Technical Leader and 

Independent Reviewer (Member of the CCB) 

Acceptance Result Reviewer(s): Automated CIS 

Acceptance Result Approver: Automated CIS 

 

10.6 Other tests 

This category is about to test any functionality that is not linked to any specific 

requirement (e.g. infrastructure tests, verification tests, etc.). 
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Table 4 - Other tests' responsibilities 

Test Case Reviewer(s): Independent Reviewer (Member of the CCB) 

Test Result Reviewer and Approver: Independent Reviewer (Member of the CCB) 

Acceptance Test Case Reviewer(s): Independent Reviewer (Member of the CCB) 

Acceptance Result Reviewer(s): Automated CIS 

Acceptance Result Approver: Automated CIS 

 

10.7 TEST DEFINITION TASKS AND RESPONSIBILITIES  

This section summarizes the tasks and associated roles in the definition of the test cases 

and their approval. 

Table 5 - Tasks and responsibilities for tests creation. 

Tasks Responsibility 

1. Complete programming and test 

creation 

Developer of the proposed CR 

2. Test data creation Developer of the proposed CR 

3. Set up test environment Automated via CIS 

4. Migrate services to test environment Automated via CIS 

5. Set up test database Automated via CIS 

6. Prepare test cases Developer of the CR 

7. Conduct test, record results, and 

communicate to the developers 

Automated via CIS 

8. Make corrections and updates to the 

processes 

Developer of the CR 

9. Review and approve final results of 

the test 

Independent reviewer part of the CCB and 

Technical Leader (or Chair of CCB) in case 

of requirement test. 

Note: The above steps need to be conducted for every type of testing 

11. V&V PROCESSES 

The V&V PROCESSES of the HYBRID Software fully adheres with the one spelled out 

in the PLN-5552, “RAVEN and RAVEN Plug-ins Software Quality Assurance and 

Maintenance and Operations Plan” (replacing the word RAVEN with HYBRID). 
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12. PROBLEM REPORTING AND CORRECTIVE ACTION 

The PROBLEM REPORTING AND CORRECTIVE ACTION of the HYBRID Software 

fully adheres with the one spelled out in the PLN-5552, “RAVEN and RAVEN Plug-ins 

Software Quality Assurance and Maintenance and Operations Plan” (replacing the word 

RAVEN with HYBRID). 

13. TOOLS, TECHNIQUES, AND METHODOLOGIES 

The TOOLS, TECHNIQUES, AND METHODOLOGIES of the HYBRID Software fully 

adheres with the one spelled out in the PLN-5552, “RAVEN and RAVEN Plug-ins 

Software Quality Assurance and Maintenance and Operations Plan” (replacing the word 

RAVEN with HYBRID). 

14. SUPPLIER CONTROL 

No subcontractors/vendors activities are envisioned for HYBRID. In case of a new 

strategy, involving subcontractors, is defined, this plan will be revised. 

15. RECORDS COLLECTION, MAINTENANCE, AND RETENTION 

The RECORD COLLECTION, MAINTENANCE, AND RETENTION process of the 

HYBRID Software fully adheres with the one spelled out in the PLN-5552, “RAVEN and 

RAVEN Plug-ins Software Quality Assurance and Maintenance and Operations Plan” 

(replacing the word RAVEN with HYBRID). 

16. TRAINING 

The TRAINING process of the HYBRID Software fully adheres with the one spelled out 

in the PLN-5552, “RAVEN and RAVEN Plug-ins Software Quality Assurance and 

Maintenance and Operations Plan” (replacing the word RAVEN with HYBRID). 

17. RISK MANAGEMENT 

The risk analysis for each application is documented on the safety software determination 

(SSD) and quality level determination (QLD). The SSD and QLD are identified in the EA 

repository for each individual application. Risks associated with the HYBRID software 

are controlled via the rigor implemented in requirements identification, testing, 

verification and validation, and change control processes. 

17.1 Safety Software Determination 

The SSD documents the decision basis as to why a software application is or is 

not safety software. The record copy is maintained within the company approved 
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APPENDIX C – SQA: SOFTWARE DESIGN DESCRIPTION (SDD)  
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APPENDIX D – SQA: HYBRID SOFTWARE REQUIREMENTS 
SPECIFICATION AND TRACEABILITY MATRIX (SPC)  
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APPENDIX E – SQA: HYBRID CONFIGURATION ITEM LIST 
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1. PURPOSE 

This document identifies all HYBRID Software configuration items (CIs) (see def.).  This 

document also identifies the level designation needed to modify CIs that can potentially 

affect the ability of HYBRID Software to comply with NQA-1. 

2. SCOPE 

This list is intended to identify all CIs for HYBRID Software, to provide a document to 

submit into the CTM (https://ctm.inl.gov) repository, and an aid to identify how severe a 

change to HYBRID Software will be. 

3. RESPONSIBILITIES 

The Asset Owner is responsible for maintaining this list and, when necessary, updating the 

EA repository when the configuration items list changes. 

The Asset Owner is also responsible for maintaining configuration management in 

accordance with PLN-6274, “HYBRID Software Quality Assurance and Maintenance and 

Operations Plan.” 

4. LIST 
 

4.01  Software, Hardware, and Documentation 
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Table 1. Software, Hardware, and Documentation 

 

Configuration 

Item 

Component Description Repository/Location 

Application 

Source Code 

HYBRID Software 

Source Code and tools for 

HYBRID Software 

GITHUB 

(https://github.com/idaholab/

HYBRID)  

  

 RAVEN Source Code for the RAVEN 

code. The HYBRID Software 

requires RAVEN for some 

workflows to be functional. 

GITHUB 

(https://github.com/idaholab/

raven) 

System 

Software 

Modelica language 
HYBRID Software modeling 

language (Current versions 

are maintained in the CTM 

repository) 

Capabilities ＆ Technology 

Management (CTM) 

(3C9B336C-8262-4790-

AEBD-582B1BD85CF5 

 

 Python 3.x 
HYBRID Software workflow 

language (Current versions 

are maintained in the CTM 

repository) 

Capabilities ＆ Technology 

Management (CTM) (UUID:  

3C9B336C-8262-4790-

AEBD-582B1BD85CF5) 

 

 Unix-compatible 

systems 

Any compatible Unix system 

(or Unix-like) 

N/A 

    

Support 

Software 

GITHUB CI Continuous Integration, 

Verification, Enhancement, 

and Testing. This is the 

continuous integration system 

used by TEAL for automatic 

testing. 

GITHUB  

Installed in all the Regression 

Automatic Test Machines 

(Test Servers) 

 

Hardware Test Servers These servers are used to test 

the HYBRID Software 

functionality.  It will use a 

“snapshot” of live data to 

perform the tests.  If testing 

on the server fails, that 

version of HYBRID Software 

is sent back to the 

Development Server for 

further configuration. 

(Complete and up-to-date list 

of servers is maintained in 

CTM repository) 

General Purpose Enclave 

EROB 
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 Workstations 

Laptops 

Personal Computer 

These consist of computer 

terminals that the end users 

use to access the software. 

N/A 

Documentation SDD-000753 HYBRID Safety Software 

Determination 

EDMS 

 ALL-XXXX HYBRID Quality Level 

Determination 

EDMS 

 UUID: CE17AF70-

BAB9-46E6-9BB8-

74484B7F1791 

TEAL Capabilities ＆ 

Technology Management  

(CTM) 

EDMS 

 PLN-6274 HYBRID Software Quality 

Assurance Plan 

EDMS 

 PLN-6274 HYBRID Configuration 

Management Plan 

EDMS 

 PLN-6274 HYBRID Software Test Plan 

and V&V 

EDMS 

 PLN-6274 HYBRID Asset Maintenance 

Plan 

EDMS 

 SPC-2990 HYBRID Software 

Requirements Specification 

and Traceability Matrix 

EDMS 

 SDD-561 HYBRID Software Design 

Description 

EDMS 

 SPC-2990 HYBRID Software 

Requirements Specification 

and Traceability Matrix 

EDMS 

 INL/MIS-20-60624 HYBRID User Manual GITHUB 
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